
Documentation for the ZX Spectrum emulator

`Z80' version 2.01

(3/5/93)

by

Gerton Lunter

P.O. Box 2535

NL-9704 CM Groningen

The Netherlands

L

a

T

E

X conversion by Lars K�oller

CONTENTS i

Contents

1 INTRODUCTION, REGISTRATION,

GENERAL INFORMATION 1

1.1 Some general remarks : 1

1.2 Registering - sounds interesting! : : : : : : : : : : : : : : : : : 2

1.3 Other emulators : 6

1.4 Thanks : 8

2 THE EMULATOR 10

2.1 Starting the emulator : 10

2.2 Using the emulator : 13

2.3 Emulation of the Keyboard, Screen and Beeper : : : : : : : : 16

2.4 Using the tape : 18

2.5 Using the microdrive : 21

2.6 Using the RS232 channel : 22

2.7 Joysticks : 24

2.8 Transferring programs : 26

2.9 Converting �le formats { the utility CONVERT : : : : : : : : 27

2.10 The utilities Z802TAP and TAP2TAPE : : : : : : : : : : : : : 28

3 THE SAMRAM 29

3.1 Basic extensions : 29

3.2 The NMI software : 30

3.3 The built-in monitor : 32

4 THE SPECTRUM 36

4.1 The Spectrum : 36

4.2 The Interface I : 37

4.3 The Spectrum 128 : 39

5 TECHNICAL INFORMATION 40

5.1 The Spectrum : 40

5.2 The Interface I : 45

5.3 The SamRam : 46

5.4 The Z80 microprocessor : 46

5.5 File formats : 50

ii CONTENTS

1

1 INTRODUCTION, REGISTRATION,

GENERAL INFORMATION

1.1 Some general remarks

This is the documentation for `Z80', a Sinclair ZX Spectrum 48/128 emulator.

This program turns your PC into a Spectrum. To make you read on. . .

The program emulates a Spectrum 48K model 2 or 3 or Spectrum

128K, is highly compatible with the real machines, includes the Inter-

face I, supports Microdrives, tape �les, the RS232 channel, '128 sound

through internal speaker or Adlib compatible soundcard, able to save

and load every Spectrum program directly to and from tape, even able

to load speed-saved programs, supporting digital and analogue PC joy-

sticks and four common Spectrum joysticks, Z80 processor emulation

including the R register, ino�cial opcodes and ags, accurate timing

of individual instructions, control over the emulated Spectrum's speed,

and all that while requiring only a PC-XT with 512K with CGA, Her-

cules, EGA or VGA; o�ering conversion programs to convert between

various emulators' Snapshot formats and to read from Disciple and Plus

D diskettes, to create .PCX and .GIF �les of Spectrum screen dumps,

an English manual,. . .

There is much to tell and explain in this documentation. First of all the

emulator itself must run, and uses your PC's resources. It is not really a

demanding program, but there are some things that need attention. These

technicalities are dealt with in section 2.1.

Some general things about the emulator are explained in section 2.2. If

you read 2.1 and 2.2, you'll be able to do most of the things you probably

ever want to do. But to exploit all of its possibilities (and oh, it can do so

much!), you will really have to read it all.

The Spectrum has a number of ways to communicate with the outside

world, like the obvious keyboard and the screen, but also the microdrives, the

tape interface, the beeper, the sound chip of the Spectrum 128, the Kempston

joystick, and the RS232 channel of the Interface I and Spectrum 128. All

these channels can be used to communicate with PC channels in some way;

for instance the keyboard is connected to the PC keyboard (sounds obvious)

and the tape I/O can be routed to a �le, as well as to a physical tape recorder.

All these things are explained in the rest of chapter 2. Paragraph 8 of that

chapter contains a number of suggestions how to transfer Spectrum programs

to the PC.

2 1 INTRODUCTION, REGISTRATION, GENERAL INFORMATION

For our own Spectrums Johan Muizelaar and I built a piece of hardware

we called the SamRam (which has nothing to do with the SAM coupe, by

the way!). It contains a monitor program and software to make snapshots of

programs. It's still very useful and I still use it a lot, although the physical

SamRam doesn't work anymore. An explanation of its functions is to be

found in chapter 3.

Some things peculiar to the Spectrum, not speci�c to this program but

useful to know are collected in chapter 4. It contains for instance a table

of Spectrum keywords and the key combination to get it; unfortunately this

information is not printed on standard PC keyboards!

There are some interesting, rather unknown technical facts about the

Spectrum that I discovered while debugging the emulator. As much as I

could think of is contained in the �nal chapter. You don't need to read this

chapter to use the emulator; if you don't �nd it interesting then skip it, but

I think programmers will like it.

A remark about copyrights. The source �les are not public domain, and

you may not use them in other PC-based Spectrum emulators. Also, the

information in this documentation �le, especially the info in the �nal chapter

(except for the �le-format info in the �nal section) may not be used for that

purpose. But you're free to use the info for Spectrum emulators for other

machines, provided that whenever you do so you should name the source.

For Spectrum software, utilities, other emulators for PC's as well as other

computers, and other Spectrum related software, you can call the Spectrum

Emulator support BBS in Groningen:

Tatort BBS Groningen

050-264840

(+31-50-264840)

v22, v22bis, v32, v32bis, MNP2-5, v42, v42bis (300-14400 baud)

At the time of writing the BBS is open 24 hours a day, but this is subject to

change. Please try calling between 22:00 and 9:00 local time �rst.

If you have access to Internet, you can �nd several Spectrum emulators in

a directory of for instance wuarchive.wustl.edu (take a look in . . . /systems/sinclair

and . . . /msdos/emulators) or nic.funet.�. And if you want to get in touch

with me, my email address is gerton@rcondw.rug.nl.

1.2 Registering - sounds interesting!

First of all, this program is shareware. That means that you're encouraged

to give it away to others, but if you do be sure not to alter the �les. Also

please don't add things to the archive �le. Shareware means that you may

1.2 Registering - sounds interesting! 3

try the program some time; if you like it you should register for it. The

shareware version of the emulator consists of the following �les:

Z80.EXE { The emulator

Z80.INI { Default initialisation �le

Z80.DOC { The documentation �le

Z80.TEX { L

a

T

E

X documentation �le, by Lars K�oller

Z80.PS { PostScript documentation �le, from the .TEX one

Z80.PIF { Program Info File to run `Z80' under Windows 3.1

Z80.ICO { Windows icon

ROMS.BIN { Various ROM images

LAYOUT.SCR { Keyboard lay-out help screen

GETRS.COM { Utility to receive blocks through RS232 lead

SAVESPEC.Z80 { Utility to send .Z80 �les from Spectrum to PC

DIAGRAM.Z80 { Circuit diagram for tape interface, and calibration

Z80FAQ.DOC { Frequently asked questions - and answers!

NEW.DOC { The What's New �le

The shareware version of the emulator program is not fully functional. It

cannot be slowed down, and it can't load programs from tape. All other

functions work the same in both versions. If you register, you will receive

the fully functional emulator together with the following utilities:

CONVERT { a general conversion program: can list out BASIC and

tranlate it back, produce .GIF or .PCX �les from screen-

dumps, translate Spectrum ASCII (CR) to PC ASCII

(CR/LF), and some other things.

CONVZ80 { Translates various snapshot and tape formats of other

Spectrum emulators into each other. Can handle Arnt

Gulbrandsen's (JPP) .SNA format, Pedro Gimeno's

(VGASPEC and SPECTRUM) .SP format and Kevin

J. Phairs' (SPECEM) .PRG format. It can also handle

tape �les of SPECEM and L. Rindt and E. Brukner's

emulator ZX.

DISCIPLE { Reads DISCiPLE and Plus D diskettes, both 3.5" and

5.25". It translates the 48K and 128K snapshot �les to

.Z80 snapshots, and ordinary �les and screen snapshots

to .TAP tape �les.

4 1 INTRODUCTION, REGISTRATION, GENERAL INFORMATION

Z802TAP { Converts a .Z80 snapshot, 48K or 128K, to a .TAP �le

which can be loaded into the emulator and saved to tape

by the next utility:

TAP2TAPE { Saves the contents of a .TAP �le back to tape, to load

it into an ordinary Spectrum.

Z80DUMP { Shows the contents of the header of a .Z80 �le.

You will also receive the source �les of the emulator, the above utilities and

the SamRam, and you'll be kept informed about future updates.

The registration fee is 20 US$, or 15 British pounds, or 35 German Marks,

or 35 Dutch guilders, or some of your local (hard) currency of about that

amount. Now there are several way to get the money to me. In order of

preference:

1. Simply send banknotes.

2. From Europe, send a Eurocheque of HFL 35,{

3. Send a postal money-order (Works �ne from e.g. Italy and Spain)

4. Send a bank cheque. Please add the equivalent of 20 Dutch guilders,

for that's the amount the banks charge for drawing foreign cheques.

If you're sending a Eurocheque, make sure you �ll it in completely (don't

forget the number at the back!) and �ll in `Groningen' for the place. If you

don't send Dutch currency, or don't �ll it in completely, or �ll in a foreign

city, the banks charge me �fteen to twenty guilders to cash the cheque.

For Dutch users, the fee is HFL 25,{. In Nederland gaat het betalen het

gemakkelijkst via de giro. Maak het bedrag over op giro 59.45.263 t.n.v.

G.A. Lunter, Groningen. Zorg er wel voor dat uw naam en adres vermeld

staan! (vooral als u Girotel gebruikt)

Send the money, together with your name and address to:

Gerton Lunter

P.O. Box 2535

NL-9704 CM Groningen

The Netherlands

You'll get the �les on a 3.5" DD disk by default, but you can also get in on

5.25 inch disks if you want.

Registrations can also be handled by B G Services in the UK if this is

more convenient. The cost is the same (15 British pounds). Payment can be

by cheque or postal order made payable to B G Services. The address is:

1.2 Registering - sounds interesting! 5

B G Services

64 Roebuck Road

Chessington

Surrey KT9 1JX

Telephone enquiries on 081 397 0763, Fax 081 391 0744.

For registrations in the Czech Republic, I recommend to contact JIMAZ,

who will provide details on registering in the local currency:

JIMAZ s.r.o.

Hermanova 37

170 00 Praha 7

phone: +42 2 379 498

fax: +42 2 378 103

6 1 INTRODUCTION, REGISTRATION, GENERAL INFORMATION

1.3 Other emulators

There are several other Spectrum emulators, both for the PC and other

computers. The list below is partly due to Carlo Delhez (the QL emulators)

and partly copied from Arnt Gulbrandsen's documentation of his JPP. I

don't think the list is complete, so if you know more Spectrum emulators,

for any computer, please let me know.

For the PC:

{ JPP, by Arnt Gulbrandsen (Norway). Faster than mine (but according

to an OUTLET review slower on some boards), by using a very smart

decoding technique, but requires a 80386 or '486 processor. Is less

compatible than Z80. Uses the .SNA snapshot format. Needs VGA.

Not many extra features.

{ VGASPEC, by Alberto Olloqui (Spain). Needs VGA and 80286. Quite

slow, and crashes on quite a lot of programs. Uses the .SP snapshot

format. Allows ROM pokes. This program is an illegal pre-release of

SPECTRUM, by Pedro Gimeno.

{ SPECTRUM, by Pedro Gimeno (Spain). Uses another .SP snapshot

format. Has a tape interface. Also quite slow. Allows changing the

rom.

{ SP, by J. Swiatek and K. Makowski (Poland). Cannot load or save

snapshots, but can load programs using LOAD "" via a �le called TAPE ZX.SPC.

Crashes many programs; even basic behaves weird sometimes. Has a

built-in monitor, but no documentation. No border.

{ SPECEM, by Kevin J. Phair (Ireland). Also allows rom changes. Dis-

plays the registers on screen. Can save and load directly from disk

using LOAD/SAVE "�lename" in BASIC. Loads .PRG snapshots, but

cannot save them. Emulates a Multiface I.

{ ZX, by L. Rindt and E. Brukner (Czech Republic). Haven't tested its

compatibility thoroughly, but one of the games supplied didn't respond

well to the keyboard, while it did work on Z80 after conversion. Good

tape �le support including headerless �les, almost identical to the mul-

tiple .TAP �le mode of Z80. Somewhat slower than Z80. Includes

program to load from tape and convert to tape �le. No documentation

at all.

1.3 Other emulators 7

For the Sinclair QL:

{ SPECTATOR by Carlo Delhez, The Netherlands; shareware; supports

tape-�les, Microdrives, RS232, Z80 snapshots, MBF snapshots and Dis-

ciple (SNP) snapshots; utilities to convert Disciple, Beta and Opus

disks enclosed.

{ ZM-1/2/3/4 by Ergon Development, Italy; ZM-1 is shareware, ZM-

2/3/4 are commercial. They all support tape-�les and Z80 snapshots,

some support Microdrives and RS232; contain a utility to transfer pro-

grams from tape via a Spectrum to the QL.

{ ZX by Andew Lavrov, CIS; shareware; supports tape-�les, MBF snap-

shots en Z80 snapshots; utility to read from Spectrum tapes (and write

them).

Spectator, ZM-1 and ZX are all about as fast (approximately 30 to 40on

a 16 MHz MC68000 machine). ZM-2/3 are faster, but this at the cost of

compatibility. ZM-4 is not an emulator, but a real-time Z80-compiler: very

fast and seems to be compatible as well.

For the Amiga:

{ Spectrum, by Peter McGavin. Very good, JPP is based to a large

extent on it. Needs about a 25MHz machine to run at full speed. Has

tape support.

{ KGB. I haven't seen it. A bit slower than Peter's, and the version

Peter saw wouldn't work on the Amiga 3000.

{ An Italian emulator which I don't know the name of. Excellent com-

patibility, rather fast. May be shareware.

{ Several unreleased emulators. Peter knows more about them.

For the Atari ST/TT:

{ One, called Spectrum. Don't know anything about it, but the doc �le

is written in quite the worst English I've seen. [This is Arnt speaking

| I've seen worse! GAL] Available by anonymous ftp from termina-

tor.cc.umich.edu.

{ There's another one in the make, to be released very soon as one of the

programmers told me, written by Markus Oberhumer and other(s).

8 1 INTRODUCTION, REGISTRATION, GENERAL INFORMATION

For the Acorn Archimedes:

{ A company called Arxe wrote one, intended to be commercial but never

released because Amstrad wouldn't permit Arxe to enclose the ROM.

{ Someone called D. Lawrence wrote another, or maybe the same. This

one is oating around but nobody has any documentation. I don't

know what its status is. Runs at about 70% of Spectrum speed on an

ARM2, not quite perfect graphics emulation.

For the Commodore 64:

{ The Whitby Software Spectrum simulator is a rewrite of the Spectrum

Basic. It will not run machine-code programs. I don't know whether

it's PD, shareware, or commercial. Quite good. (Responds nicely to a

POKE 23659,0)

All emulators for PC, and some for the Atari, Amiga and QL are available

on the support BBS.

There are also emulators available for the ZX81. Carlo Delhez, who also

wrote a Spectrum emulator for the QL, wrote the ZX81 emulators XTri-

cator (for the QL) and XTender (for PC's). These programs can also be

downloaded from the support BBS.

1.4 Thanks

From the very �rst beginning in november 1988, when I wrote the �rst lines

of code, Johan Muizelaar has been a very demanding and critical user, being

only satis�ed when it was perfect. And quite a few things I would never have

started working on if he hadn't insisted that I would. . .

Secondly, I have to thank Brian Ga�, who is now handling the UK reg-

istrations for nearly a year, and besides doing lots of PR for my program

there helped me with many things, especially with the DISCiPLE conversion

program.

Finally, I'd like to thank

� Lars K�oller for transforming the plain ASCII doc to L

a

T

E

X,

� Thomas Franke for translating the entire Dutch v1.45 manual into Ger-

man,

� Carlo Delhez for information on the '128 and several other things,

� Andre Mostert for some more '128 info and info on EMS memory,

1.4 Thanks 9

� Walter Prins for many '128 programs and a nice African chat,

� Marco Holmer for making the program such a big hit at the HCC dagen,

� Henk de Groot, for �nding and helping me work around a bug in A86

version 3.22,

� Arnt Gulbrandsen for pointing out to me that it is not necessary to

clear a register when it contains 0,

� Ruud Zandbergen for his digital joystick interface,

� Ettore de Simone for �nding a noisy bug, and for some very wise re-

marks about theological issues,

� Jan Garnier for providing the chips to reanimate my real Spectrum,

� Rudy Biesma and Tonnie Stap for providing info on the DISCiPLE

disk formats,

� Hugh McLenaghan for his very valuable help on the DISCiPLE pro-

gram,

� Burkhard Taige for various bug reports on it,

� Ian Cull for enhancing the DISCiPLE program and �xing two early

bugs,

� Bert Lenarts for information on the AZERTY keyboard, and

� Andre Brus for writing the most enthousiastic letter I've ever read!

10 2 THE EMULATOR

2 THE EMULATOR

2.1 Starting the emulator

The emulator will work on any PC with at least 512K memory, with a VGA,

EGA, Hercules, CGA or Plantronics video adapter. If available, it will also

use EMS memory, an Adlib compatible soundcard, and an analogue or digital

joystick.

The emulator will �rst read in the switches that are given in the Z80.INI

�le. You can enter switches there in the same way you would on the command

line. Lines starting with a % sign will be ignored.

After any switches, you may specify a snapshot �le on the command line.

This �le will then be loaded and executed directly. The extension .Z80 is not

necessary. The emulator will also read .SNA �les (the snapshot format of,

amongst others, Arnt Gulbrandsen's JPP); you don't have to convert them

to .Z80 �les (but you may want to to save disk space).

The emulator tries to �gure out what hardware is available, and uses

things as it �nds it. Most of the time this will work without you having to

tell it anything, but if you have to you can override the defaults by putting

switches on the command line. Switches that you use often can be put in

the Z80.INI �le. If you give a switch a second time, for instance if it is also

in the Z80.INI �le, it will disable it again.

If you are using Hercules, try starting the emulator with -xh on the com-

mand line. The emulator will use a non-standard Hercules mode to display

a full-screen Spectrum picture. You may need to calibrate your monitor to

make the image steady.

If you're using Plantronics, try -p and -q to see which gives the best result.

Some black-and-white VGA monitors only display one of the three RGB

colours (green most of the times), resulting in several Spectrum colours be-

coming indistinguishable. Use -xb to use grey tones instead of colours.

If you're using a Trident VGA with version 3 BIOS, you may see the

picture compressed at the top of the screen, while the bottom half contains

vertical white lines. This is due to a bug in the Trident VGA Bios. Start the

emulator with the switch -xv to get a full picture.

If you haven't got EMS memory, the page swapping of the Spectrum 128

cannot be emulated exactly. Most programs will work - although quite slowly

because page swapping will take much time without EMS - but some may

crash. On 386 and 486 machines you can emulate EMS by software, using

EMM386 for instance. Of all the EMS emulators I've tried (that's three

or four) QEMM was by far the fastest, but the EMM386 supplied with the

new DOS 6 seems to be about as fast. A slow EMS emulator can degrade

2.1 Starting the emulator 11

the performance of the '128 emulation signi�cantly! Some computers have

hardware EMS capabilities, some '286 boards for instance. Refer to your

own documentation for details.

And don't use hard disk based EMS emulators: the Spectrum emulator

will drive your hard disk nuts!

There are a few Spectrum programs that have an odd stack pointer, and

run over the ram/rom boundary, for instance Deep Strike. This crashed

version 1.45 of the emulator. The bug has been removed in version 2: if

the emulator tries to read a word at FFFF, the processor generates an INT

0D interrupt and the emulator will handle it correctly. However, this won't

work when an EMS emulator is installed that puts the 386 or 486 processor

in virtual 8086 mode. You can test all this by typing

CLEAR 65535:POKE 65535,0: RETURN

in Basic, and the emulator will lock up if it runs in virtual mode. There is

no simple solution to this problem, but luckily it doesn't happen often. If

it does, the easiest way to to solve it is to change the Spectrum program so

that it uses an even SP | this is always possible, but not always easy!

A very few programs (the only examples known to me are Fireman and

Thing) are quite sensitive to the relative actual execution speed of emulated

Z80 instructions, and crash if it isn't exactly right. If you slow down the

emulator, these program will run �ne, because then individual instructions

are more carefully timed.

The Spectrum 128 has a built-in sound chip. If you have an Adlib com-

patible soundcard installed, the Spectrum 128 sound will be played through

the Adlib card. If you haven't, the loudest of the three sound channels will be

played through the internal PC speaker. Sometimes the e�ect is quite nice,

sometimes it is horrible, but it's all I can do on a standard PC. If you don't

want to have the Spectrum 128 sound played through the internal speaker,

use the switch -xi. If you don't want the Adlib card to be used (for instance

to hear the sound through the internal speaker) use -xa.

If you're using the Pro-Audio Spectrum 16 sound card, do not install the

resident FM.EXE program; it causes problems with the emulator. Do make

sure that MVSOUND.SYS is installed in your CONFIG.SYS �le, to make

the Pro-Audio Spectrum 16 Adlib compatible.

The noise channels of the Spectrum 128 sound chip can work on di�erent

frequencies, whereas the FM chips of the Adlib card cannot. However, if your

Soundblaster is equipped with CMS chips, the noise frequency can be pro-

grammed. Specify -xc to use the CMS chips. (These chips are not available

on Soundblaster Pro cards, and neither on most Soundblaster clones).

If you're living in Belgium or France, you are probably using an AZERTY

12 2 THE EMULATOR

keyboard. Specifying -xz on the command line will make all letter keys and

many punctuation keys work in the right way.

If the emulator erroneously detects an analogue or digital joystick, use

the switch -kk.

It may be annoying to have to press Num-Lock every time you use the

Spectrum 128 (because otherwise you'll have to use Shift with the cursor

keys to move the menu bar). To make the emulator press shift by default

every time you use the PC cursor keys in '128 mode, use the switch -xs. If

you press Num-Lock now (in '128 mode), the shift-key won't be pressed. The

48K modes are not a�ected by this switch.

The emulator can now also be run under Windows 3.1! However, you

cannot use the tape interface, Real mode doesn't work anymore, and the

keyboard is not emulated as well as usual, because I have to scan it using

BIOS calls. Be sure not to set the keyboard repeat rate too low; an initial

delay of 250 ms followed by 10 keys a second will do, but don't make it

slower. Some key combinations may not work, such as ALT 4 for $. So

if you want to use the emulator seriously then you shouldn't run it under

Windows, but it's nice to see three Spectrums run simultaneously. . . If you

let the emulator run full-screen you may use EGA or VGA, if you want to

run it windowed you'll probably have to use CGA, because the virtual video

display driver of Windows cannot handle the VGA mode I use (although it's

only a standard text mode!). You'll probably want other default settings of

some parameters (such as the video mode) if you run the emulator under

Windows; the emulator will always use the .INI �le in the directory of the

Z80.EXE �le so the other switches must be put on the command line, in a

.PIF �le. An example .PIF �le (which runs the emulator in windowed CGA

mode) is supplied.

Since the execution speed of a program running under Windows heavily

depends on other processes, the emulator doesn't try to measure how fast

it is running under Windows. It says it runs at 100%, and you can slow it

down in the usual way, but the percentage is now relative to the maximum

speed, and has nothing to do with the actual execution speed.

The emulator will automatically detect whether Windows is running, and

act appropriately. To run the emulator in Windows compatibility mode in a

normal DOS environment, use -xw.

When running the emulator under Desqview, use -e for EGA mode dis-

play.

To run the emulator with a di�erent rom than the standard one, you can

specify a rom image �le on the command line. Use the switch -xr �le, where

`�le' is the name of the image �le. This �le should be exactly 16384 bytes

long. It will of course not be used in Spectrum 128 or SamRam mode.

2.2 Using the emulator 13

The emulator `ZX' by Rindt and Bruckner comes with several roms,

stored in their tape format. You can convert these �les to .TAP �les, and

then load them in the normal way, but to run the emulator with these roms

you need the bare 16K binary image �le. To extract it from the rom �les,

type the following at the DOS prompt:

C:\debug rom.000 (or other rom �le (of 16406 bytes))

-m 115 L 4000,100 (move the rom down, overwrite header)

-rcx (new length of exactly 16K bytes)

CX 4016

4000

-n rom000.bin (or some other name)

-w (write it)

Writing 04000 bytes

-q (and quit)

Then start the emulator with -xr rom000.bin on the command line to

use the rom. It will only a�ect the normal 48K modes; the SamRam and

128K modes will always use their own roms.

These are the most important switches that you have to specify when

you start the emulator. Most of the other switches are used to select default

values for various things which can also be changed when the emulator is

started. Some useful things to select are default directories for .Z80, .TAP

and .MDR �les; these will be explained below.

2.2 Using the emulator

When the emulator starts, you'll see the usual Spectrum copyright message

appear on screen. Pressing F1 will pop up a small help screen that explains

the function of the function keys and various other special keys.

By pressing F10, you enter the main menu of the emulator. Most of

the menu options can be chosen directly by pressing another function key.

The only exception is X, Extra functions, for which no function keys were

available anymore. If you're somewhere deep in the menu structure of the

main menu, pressing ESC will get you one level higher most of the time.

Pressing F10 will get you back to the main menu.

The `Select Hardware' menu option sits under function key F9. There

are �ve con�gurations you can choose: a normal Spectrum 48K with or

without Interface I, a Spectrum 128K with or without Interface I, and a

Spectrum with Interface I and SamRam. Switching to another mode will

by default reset the Spectrum. If you don't want this to happen, press

CTRL-ENTER instead of ENTER when you've made your choice. It cannot

14 2 THE EMULATOR

be guaranteed however that the Spectrum won't crash or behave weirdly,

for obvious reasons. Going from a Spectrum 128 to a normal Spectrum will

almost always crash it, except if you enter the SPECTRUM command before

switching.

To use SamRam's monitor on a 128 program, switch the hardware from

the main menu, and generate an NMI (Extra functions - N) before returning

to the emulator. This will often work, but you can't return to the program

without crashing it.

On a real Spectrum 128, the menu bar of the startup screen is moved

using the cursor keys on the '128 keyboard. These keys simultaneously press

a normal cursor key (5,6,7 or 8) and shift. So you can shift the menu bar

with shift-6 and shift-7. As is already said above, it is possible to use the

PC cursor keys for this; you have to select Cursor joystick emulation (which

is selected by default) and press Num-Lock once to have the PC-cursor keys

press the Spectrum Shift key too. You could also specify -xs on the command

line (or put it in the Z80.INI �le) to make the PC cursor keys by default press

shift for you in '128 mode.

The Save and Load Program options (F2 and F3) will save the whole

state of the Spectrum and some of the emulators' settings to a .Z80 snapshot

�le. It will pack the data somewhat, so that the length of the �le varies.

The amount of memory saved depends on the current hardware mode; 48K

for normal Spectrum, 80K for SamRam, and 128K for Spectrum 128. The

settings that are saved are those that are program dependent, for instance

which joystick emulation is used, and more technical settings like those of

the R register, LDIR and Issue 2 emulation, double interrupt frequency and

video synchronisation. These are explained below.

Loading a .Z80 �le will cause several settings to be changed. Resetting

the Spectrum will not reset these settings to their default values! Especially

the joystick emulation setting change can be confusing, so keep track of that.

The Change Settings menu pops up if you press F4. You can do many

things here, and I won't explain them all here. The I and O options can be

used to redirect the RS232 output; see paragraph 2.6 for information on this.

R: R - register emulation, and

L: LDIR emulation

are seldom needed. For remarks on these options see chapter 5, and para-

graph 2.8.

2: Issue 2 emulation will turn the emulated Spectrum in an Issue 2 Spec-

trum. (This option also works, but is ridiculous, in Spectrum 128

mode). Some very old programs (Spinads) will not respond to the

2.2 Using the emulator 15

keyboard properly on Issue 3 Spectrums, and for these programs this

option was added. Seldom needed.

F: fast ash makes ashing go twice as fast. Not very useful.

S: sound enables you to turn o� all sound, useful for late-night playing.

D: double interrupt frequency is useful for slow machines, as some pro-

grams will run faster when this option is on. If you're typing in a

BASIC program on a slow machine, always turn this on, since the

keyboard, which is polled by an interrupt routine, will respond much

better. On the other hand, some programs will crash with this option

active.

V: video synchronisation is used to remove the ickering of moving char-

acters in some programs. You can choose between Normal, High and

Low. Normal works well for almost all programs; Ghosts and Goblins

and Zynaps look much better when this is turned to High. If you see

characters not moving smoothly or icker, or a background not mov-

ing as a whole, experiment a little bit with this setting, and re-save

the snapshot when you've found the best setting. (For a slightly more

detailed discussion of this option see section 5.1)

J: joystick emulation speci�es which Spectrum joystick the PC cursor keys

(and analogue or digital joystick, if it is available) control. You can

choose from Cursor (default), Kempston, Interface 1 and 2. As I al-

ready said above, if Cursor joystick is chosen, the Num-Lock key con-

trols whether Shift is pressed too if the PC cursor keys are pressed.

(Since the shift and number keys are pressed exactly simultaneously, it

is possible that the Spectrum has already read the Shift key, but not

yet the others, when you press both keys down. Sometimes you will

therefore get the number 5,6,7 or 8 instead of a cursor movement.)

C: Change speed lets you control the speed of the emulator. As a side

e�ect, slowing down the emulator makes the timing of the various op-

codes correspond more exactly to the actual timing on a real processor.

That concludes the discussion of the F4-'change settings' menu. Let's con-

tinue with the other function keys.

F5 generates an NMI. Only useful if in SamRam mode; otherwise it may

reset the Spectrum or (sometimes) crash a program. ALT-F5 or CTRL-F5

resets the Spectrum.

16 2 THE EMULATOR

F6 turns on Real Mode. Try this when the emulator is playing a tune and

sounds a little harsh. This mode is needed when you want to load speed-saved

games from tape; see below for more information.

F7 and F8 activate the tape- and microdrive-menus. Again, see below for

more information.

Resetting the Spectrum, or generating an NMI can be done from the main

menu too, in the X - Extra Functions menu. This is useful if you want to

activate the NMI software of the SamRam for instance just after loading a

snapshot �le, or just after you changed the hardware mode. From this menu

you can also shell to DOS, and save or load a screen snapshot: a 6912 byte

�le with extension .SCR that contains a dump of the screen information.

This enables you to very easily transfer screens from one Spectrum program

to another. The .SCR �les can be converted to .GIF or .PCX �les by the

CONVERT program, available to registered users.

When you're typing BASIC-programs in 48K mode, you'll probably have

to look up some Spectrum keywords. Further down in this documentation

there is an alphabetical list of all keywords and their key-combination. For

`on-line' help, press ALT-F1 to see the Spectrum keyboard layout.

2.3 Emulation of the Keyboard, Screen and Beeper

The keyboard. Letter keys are mapped to the Spectrum's letter keys. The

ALT and CTRL keys can both be used for Symbol Shift. Then, there are a

lot of keys on the PC keyboard which don't exist on the Spectrum keyboard.

Many of them are used, to make things easier:

� The function keys have several special functions. See the previous

paragraph.

� CTRL-Break and CTRL-ALT-DEL quit the emulator.

� The punctuation keys { = ; ' , . / and their shifts: + : " < > ? have

the e�ect of pressing Symbol Shift and the corresponding letter key, so

you can use these in the straightforward way.

� The ESC key presses Shift-1, EDIT, used as a sort of ESC key in many

Spectrum programs. The Backspace key presses Shift-0, the Delete of

the Spectrum. CapsLock presses Shift-2, Spectrum's capslock key.

� The PC-cursor keys and the numeric keypad keys 8,4,6 and 2 control

the Cursor, Interface 2 or Kempston joystick. The TAB key, and 0,5

and ./DEL on the numeric keypad control the �re button. If the Cursor

joystick is selected, you can select whether Shift should also be pressed

with the NumLock key (but see the discussion above of the -xs switch).

2.3 Emulation of the Keyboard, Screen and Beeper 17

If you're running the emulator on a slow computer, try selecting double

interrupt frequency. Most programs poll the keyboard by interrupt, in any

case the ROM does, and doubling the frequency with which this happens will

make the emulated Spectrum react much more quickly on your keystrokes.

If you've got an AZERTY keyboard, the standard mappings of the keys

won't work at all properly. Include the switch -xz in your Z80.INI �le in

this case; many punctuation keys will now also work properly. There is no

support for other non-US keyboard layouts; sorry!

Now about the screen emulation. Fifty times an (emulated) second, the

screen is checked for changes. If anything has changed, the change is dis-

played on the PC screen. It turned out that this was the fastest method of

updating the screen.

I tried to update the screen at about the same time the real Spectrum

shows it on the TV screen, relative to the 50 Hz interrupt. There is a problem;

the Spectrum takes about 1/100th of a second to generate the whole picture,

while I stop the emulator at some point in the 1/50th- of-a-second cycle

and display the whole screen at once. Usually this makes little di�erence,

but with some programs it does: characters may icker heavily or disappear

entirely (see for instance BC's Quest for Tires). By selecting the `video

synchronisation mode', you have some control over the exact point of the

cycle at which the screen is updated.

In the Hercules, CGA and Plantronics modes, not all colours can be

displayed. In the EGA mode, all colours can be displayed, but some colours

have the same intensity in bright 1 as in bright 0. In VGA mode, all colours

closely resemble the original Spectrum colours, and furthermore in this mode

the screen updating is the fastest of all modes.

The border updated every 1/50th of a second, so you cannot see the

familiar stripes when saving. However, in real mode the emulator uses the

overscan of EGA to display the border, and you can see some stripes there,

and in VGA mode the border can be shown full-size. The only drawback of

the border emulation in real mode is that there appears some `snow' on the

screen at each OUT - I don't know a way around this.

Finally, the sound emulation. The Spectrum beeper is emulated by the

PC's internal beeper. Because every 1/50th of a second the screen has to be

updated, and this takes a little time even if there are no changes, the sound

is a bit harsh. If you select real mode, the emulator won't update the screen

anymore and the sound will sound better.

The sound of the Spectrum 128's sound chip is played through the Adlib

card; if you haven't got such a card some notes are played through the

internal speaker. That sound will be turned o�, however, as soon as the

program makes a sound through the normal speaker of the Spectrum. Some

18 2 THE EMULATOR

Spectrum 128 programs use the sound chip and the beeper at the same time,

and this won't work properly without an Adlib card.

2.4 Using the tape

This emulator can load programs that are saved to tape in the usual way, but

also speed-saved programs can be loaded. Furthermore, you can also make

a disk �le act as an `emulated tape', so that the normal SAVE and LOAD

commands can be used to transfer data to and from disk easily.

Let's �rst discuss the saving and loading of programs using a tape recorder|

that'll be the �rst thing you want to do, to transfer your programs to the

PC. First of all, you need an interface to connect the tape recorder to the

PC. The parallel printer interface is used for this. All you need is a very

simple and cheap piece of electronics to get the input and output signals at

the appropriate and safe levels; the circuit diagram is in the program DIA-

GRAM.Z80. The interface has to be calibrated; a program to help doing this

is contained in the snapshot �le. Adjust the variable resistor so that when

the tape recorder is played at normal volume, the bar points just below 50%.

When the tape recorder is turned o�, the bar should go to 0%.

You have to tell the emulator which LPT port you use for tape I/O. This

can be selected in the tape menu, but it can also be speci�ed on the command

line or in the Z80.INI �le with the -b switch; for instance -b2 selects LPT2.

Default is LPT1.

There are two ways to load programs: in `real' or normal mode. In real

mode, the emulator doesn't update the screen or scan the keyboard anymore,

so that the emulated Spectrum program can run smoothly. The emulator

has to run at about 100%, but then you're able to load everything a normal

Spectrum would load, including speed-saved programs. The only thing you

see on screen are the loading bars in the border (on EGA or VGA screens).

Real mode is selected by pressing F6. Saving programs in real mode is a bit

useless but it works; enter the SAVE command, press a key to start saving

and quickly press F6 when the saving starts. It will continue in real mode.

If your computer is just fast enough, don't slow the emulator down too

much. Because the IN instruction is relatively slow, the emulator has to run

at about 110% for the best results. If your computer is really fast, you can

best slow it down to exactly 100%. If your computer is just a bit too slow,

you can try to make your tape recorder run slower too (usually you can do

this by adjusting a little screw at the back of the motor), I successfully loaded

several speed-saved programs at 90%.

In normal mode, the standard ROM loading and saving routines are

`trapped' (at addresses 04D8 and 056A) when they're about to start sav-

2.4 Using the tape 19

ing or loading. A routine in the emulator itself then takes over, and loads

or saves a block to tape or a disk �le. By default, this routine uses the tape

instead of a �le, and I'll discuss that mode of operation �rst.

Using these SAVE and LOAD routines has a great advantage as well as a

disadvantage compared to using the Spectrum's own routines in real mode.

The advantage is that the internal routines work on every machine, no matter

how slow or fast, without having to make the emulator run at 100%. The

disadvantage at using them is that they obviously won't understand speed-

saved �les. For normal use, these internal routines work much easier, and

real mode loading is only necessary for speed-saved and very well protected

programs.

So far for the general information about tape loading.

The emulator uses �les with the extension .TAP to hold a piece of `tape',

with several blocks on it. Each block is usually either a header or a data

block; a normal �le thus consists of two blocks. There are two modes of

operation when loading and saving to disk �les, single and multiple .TAP �le

mode.

In single .TAP �le mode, each block saved is appended to the end of the

.TAP �le, like would happen if you were actually saving to tape. In the same

way, when loading in single �le mode, each time the ROM wants to load a

block, it is presented the next block in the .TAP �le. It is handled as it would

if the block was loaded from tape, that is, if the ROM needs a header and is

presented a data block, it will skip it. The header will however be considered

to be read. So, entering LOAD "rubbish" will show all headers in the .TAP

�le, just as an ordinary Spectrum would show all headers on the tape if you

left the tape running.

If the last block is loaded, the �le pointer is moved to the start again. So

a .TAP �le can be considered to be an in�nite tape. Single .TAP �le mode

is useful to save whole programs to disk, or for multi-load games that need

to load in levels as you play.

A sort of `random access' �le management would also be useful, for in-

stance when you're developing a program and need to save several pieces of

data to disk and later load back a speci�c one. This can be done in single

.TAP �le mode (by positioning the �le pointer using the Browse function),

but there's a di�erent mode of operation that makes things easier: multiple

.TAP �le mode. In fact, by default the emulator is in this mode.

When the emulator is in multiple .TAP �le mode, it will read all blocks

from all .TAP �les in a speci�ed directory, one after the other. When it has

�nished reading the last one, it will start all over again.

When saving, the emulator will put the two blocks of a normal �le, the

header and the data block, in one .TAP �le with a unique name made up

20 2 THE EMULATOR

of the printable letters of the �le name and a two-digit number. The name

of the .TAP �le is irrelevant to the emulator, but to have it resemble the

name of the actual Spectrum �le you saved is simply convenient. If the

Spectrum program saves a data block to tape without �rst saving a header,

the .TAP �le will contain only this data block, and the DOS �le name will be

HDRLES, with a two-ditit number appended to make it unique. The format

of the .TAP �les saved in multiple .TAP �le mode is exactly the same as the

format used in single .TAP �le mode.

You can easily string together .TAP �les; for instance a number of .TAP

�les created in multiple .TAP �le mode can be put into one big .TAP �le

simply by copying them together, e.g.

COPY /B FILE1.TAP + FILE2.TAP ALL.TAP

(Note: in some versions of DR DOS the /B switch, necessary because oth-

erwise copying stops after a CTRL-Z character, doesn't work properly; load

your old COMMAND.COM to copy the �les).

Now you know what you can do, but how to get the emulator to do it?

That's what the �nal section is about: the tape menu.

Press F7 to enter the tape menu. Pressing S will select or de-select single

�le mode. By default, multiple .TAP �le mode is selected. In this case, there

are three other possible choices in this menu. First of all, D selects a tape-�le

directory where the .TAP �les will be saved into and loaded from. A default

directory can be selected by putting the -xs switch on the command line or

in the Z80.INI �le; for example -xs c:nspectrumntaps selects that directory.

The I and O options are used to select the source and destination of the

saving and loading: the LPT port for a physical tape recorder, or `disk' for

disk �les. By default LPT1 is selected; another LPT port can be selected

with for instance -b2 or by pressing I and O. Input and output are directed

to disk by default if a default tape �le directory is given by means of a switch

on the command line or .INI �le.

If Single .TAP �le mode is selected, di�erent and more menu options

appear. With G and P, the input and output tape �les can be selected.

They may be the same. If a speci�ed output �le already exists, you may

choose to append to or overwrite this old �le. Saving is always at the end of

the �le; loading always starts at the beginning of the .TAP �le.

With the B option - Browse - the position of the �le pointer into the

input .TAP �le can be changed. If you, for instance, type LOAD"" instead of

LOAD "" CODE, the �rst header is read, and you would have to read all other

headers before trying to load the �le again. With the browse option you can

conveniently change the �le pointer. Of every header (that is, every block

2.5 Using the microdrive 21

with ag byte 0 and length exactly 17) the name and type, and of every data

block the length is shown.

The option B can also be used to delete speci�c blocks from a .TAP �le.

Make sure you do not only delete a data block or a header, or the ROM may

get confused! (Double data blocks will be skipped, but double headers can

generate Tape Loading errors).

As in multiple .TAP �le mode, I and O are used to specify the source

and destination for saving and loading. If you enter a .TAP �le name with

G or P, this will automatically be set correctly. You can then always reset

the input or output back to LPTn again, of course.

Finally, in Single .TAP �le mode you can use `tape mirroring': loading

programs from tape (in normal mode, i.e. not using Real mode) and at the

same time saving a copy of each block loaded into a .TAP �le. This .TAP

�le can later be used to load the program again, might anything go wrong.

There are two ways of mirroring: normal mirroring and exact mirroring. The

last one must be used only in exceptional cases; it will always make a copy of

a block, even if it had a tape error (the corresponding block in the .TAP �le

will also have a tape error). This causes ticks in leader tones to make 0-byte

blocks, so the .TAP �le may get messy. Do not use exact mirroring if you

don't really have to; I think normal mirroring will always work in practice.

If you try to leave the tape menu when for instance tape mirroring is

selected, and no output �lename is given, the emulator will warn you and

will insist that the error be corrected. Yes, it's stubborn!

2.5 Using the microdrive

Compared to the tape, this is really simple. Cartridges are emulated by

�les of 137923 bytes. These �les have the extension .MDR, and can contain

up to 126K of data. The emulator emulates 8 microdrives, the maximum

amount the Interface I software can handle, and each of these cartridge �les

can be inserted in any of the 8 microdrives. (Do not insert one �le into more

than one microdrive; this will cause problems with the bu�ering done by the

emulator as well as the Interface I, and might result in data loss).

Press F8 to enter the microdrivemenu. Press 1 to 8 to select a microdrive,

and I to insert a microdrive cartridge. You can select an existing one, or type

a new name. If the cartridge �le isn't found, the emulator asks whether it

should create it. When created, you'll have to format it �rst; if you don't,

you'll get a `microdrive not present' error when you try to read it, just as

happens with real unformatted cartridges. To format a cartridge, type

FORMAT "m";1;"name"

22 2 THE EMULATOR

After this the cartridge should have 126K of free space.

The cartridge can be write protected; see the menu option in the F8

menu. This is a characteristic of the cartridge, and the write protect tab

information is therefore stored in the cartridge �le.

As on the real Spectrum, you'll have to be careful with OUT's if a car-

tridge is inserted. Try OUT 239,0 (on a real Spectrum, this turns on the

microdrive motor) and wait a few seconds; most of your data will be lost!

You can stop the microdrive motor by typing STOP (or, more generally,

generate an error).

The microdrives are emulated at IN/OUT level. This means that every

utility or program that uses microdrives ought to work on the emulator. Most

utilities use hook codes, and these will certainly work.

The GAP line is emulated; this signal is activated if the interface I senses

a piece of tape with no data on it. If the checksum of the �rst header block

of a microdrive header or data block is not correct, that block is considered

to be a GAP. This will only happen if some utility writes a bad block to

microdrive deliberately, if the �le is newly created and unformatted, or when

you type OUT 239,0.

2.6 Using the RS232 channel

This was the only Spectrum i/o channel that could be used in the early

versions of the emulator. Using .TAP �les instead of the RS232 channel

is often easier, but sometimes using the RS232 channel can be very useful

too, for instance if you've got a null-modem lead that connects a Spectrum

with interface I to the PC you can use it to transfer data and programs

easily. Furthermore, the RS232 channel is the easiest way to let the emulator

communicate with a PC printer.

The Interface I RS232 port is called the "B" or "T" channel. The �rst

is the binary channel, the "T" channel won't let all control codes through

and will expand any keyword; useful for LISTing a program but otherwise

annoying.

The Spectrum 128 has its own RS232 port; it is called the "P" channel.

Output to either the Interface I's or Spectrum 128's own RS232 port will all

be processed as `RS232 output', and input will go to both (that is, to the

one you happen to read from).

The output to the RS232 channel can be routed to an LPT port, to a

COM port or to a �le on disk. Input can come from either a �le or a COM

port.

If you want to use the RS232 channel for printing using LPRINT and

LLIST (shorthand for PRINT #3 and LIST #3), be sure to open that channel

2.6 Using the RS232 channel 23

for output to RS232; by default it sends its output to the ZX Printer, which

is not supported. You can open the channel by typing OPEN #3,"B" (or "T"

for listings, or "P" on a Spectrum 128).

Input and output are bu�ered. This is important to remember when

you're transferring �les using the SAVE and LOAD *"b" commands of the

Interface I. If the header is missed, for instance if you try to load the wrong

�le type, re-sending the �le will not directly work because there will still be

bytes in the bu�er. You have to clear the input bu�er before re-sending the

�le. When inputting from a disk �le, the �le pointer can be reset to point to

the start of the �le again to re-read the header.

When inputting or outputting from or to a disk �le, the read or write

position is displayed as a byte-count. An <EOF> sign will appear if an

input �le is read completely through to the end.

The RS232 redirection options are in the Change Settings (F4) menu.

The menu options are pretty obvious if you keep above remarks in mind, so

I won't go into that.

When using a COM port, make sure you have initialised it before starting

the emulator with the Dos MODE command, for instance

MODE com1:96,n,8,1

initialises COM1 to send and receive at 9600 baud, no parity, 8 data bits and

1 stop bit, the default for the Interface I.

Here is how to transfer programs from a Spectrum to the PC using the

RS232 lead. First, you need a null-modem lead. I myself use the following

cable:

Spectrum AT PC

(9 pins) (9 pins) (25 pins)

3 TxD |||||||{ RxD 2 3

4 DSR |||||||{ DTR 4 20

CTS 7 4

j

RTS 8 5

7 GND |||||||{ GND 5 7

(so CTS and RTS have to be connected!) This is not a full null-modem

lead; you can only send data from the Spectrum to a PC. Here's how to

transfer: load the program SAVESPEC.Z80 in the emulator and type the

24 2 THE EMULATOR

basic program over into the real Spectrum, and run it. It saves a short piece

of code to tape.

Now load the program you want to transfer, and stop it. (This may

be tricky!) Load the code back into memory at address 16384 (the code is

relocatable but this is the safest place):

LOAD "RS232" CODE 16384

Now open channel three for output to RS232; on a Spectrum with Interface

I this would be OPEN #3,"b", on a Spectrum 128 it would be OPEN #3,"p",

and with other interfaces you'll probably know what to do. Select the right

baud rate on the Spectrum (probably FORMAT "b",9600 or something like

that). Now initialise the appropriate COM port on the PC and type

GETRS /n filename.z80 (n=COM port used)

at the DOS prompt, and then type RANDOMIZE USR 16384 to send the whole

memory over to the PC. The resulting .Z80 �le should now be exactly 49182

bytes long (that is 48K+30 bytes), if not try again or try a lower baud-rate.

Voila, transferred!

To transfer short blocks of data it's often easier to use the LOAD *"b"

and SAVE *"b" commands of the Interface I. When the right options have

been selected in the RS232 i/o redirection menu, you should just follow the

instructions of the Interface I user manual and all should work as expected.

2.7 Joysticks

As was already said in the introduction, the emulated Spectrum joystick

(Cursor, Interface 2 or Kempston) is controlled by the PC cursor keys and

5/0/. on the numeric keypad and TAB as �re keys. The emulated joystick

can also be controlled by a real joystick, both an analogue (PC standard) or

a digital one.

The analogue joystick support is rather straightforward. If you've got

one, it works - it couldn't be simpler. The digital joystick support is less

obvious, since PC's don't support these.

To use digital joysticks, Ruud Zandbergen has made a device that uses

the two inputs of a normal analogue joystickinterface to connect a digital

joystick to a PC. Here's the circuit diagram:

2.7 Joysticks 25

15 pins male (pc) 9 pins male (joystick)

47
, 1/4 Watt

1+9

3

6

13

11

2

4+5+14

7 (5V)

4 * 1k

1/4 Watt

4 (up)

3 (dwn)

1 (rght)

2 (lft)

6 (�re)

8 (GND)

4+5+14 means: connect pins 4, 5 and 14. The same applies for pins 1 and

9. Here's the list of ingredients:

{ 1 x 9 pins D plug, male

{ 1 x 15 pins D plug, male

{ 4 x 1k
 , 1/4 Watt resistors

{ 1 x 47
, 1/4 Watt resistor

{ piece of 7-wire atcable

Everything can be �t into the 15-pins plug. Make sure the resistors don't

touch the other blank connections! This interface can be used for all usual

digital joysticks, with or without auto �re (that is every joystick that work

with a Kempston joystick interface, or that work on a Commodore 64/Amiga

or Atari). The joysticks for the Spectrum +2/+3 will not work, however the

pin layout is easy to change.

This joystickinterface needs an analogue PC-joystickinterface on which

you can connect TWO analogue joysticks (on one plug!). Most cards can do

this, but some multi-I/O cards support only one joystick. Check the docu-

mentation of your I/O card to see whether your joystickinterface is suitable.

The soundblaster joystick interface works �ne.

26 2 THE EMULATOR

A number of PC games will behave strange when the digital joystick

interface is connected; they run very slow or crash. When this happens,

remove the joystick interface (not only the joystick!).

2.8 Transferring programs

There are a number of ways to transfer programs from the Spectrum to the

PC: loading them directly from tape, using the RS232 lead or transferring

from disks of Spectrum disk interfaces. And then you might have snapshot

�les from other emulators that you want to convert to .Z80 �les. I'll discuss

these cases one after the other.

Converting using the COM port is not so easy most of the times, but if

you've got a null-modem lead waiting to do something you could read section

2.6. Luckily, there are easier ways.

First of all, you can use the tape. If you want to do this, then the �rst

thing to do is to read section 2.4 carefully - now you know almost everything

you need. Most programs you have probably use the normal tape format; you

will �nd that these usually load right away. If the programs use speed-load,

using real mode will probably load most of these right away too.

But some programs are really cleverly protected, and use obscure features

of the Z80 processor. To run these programs, turn on LDIR emulator and

R register emulation (see the `Change Settings' menu, F4). Note that the

emulator will slow down a bit when R register emulation is selected; if you

need to use real mode then make sure you speed the emulator up again to

100%. After the program has loaded successfully, you may try to turn R

register emulation o� again; I don't know any program that needs R register

emulation after loading. Read chapter 5 for more technical information about

these options.

If you've got Spectrum disks, you will probably be able to convert the

programs on them to a useful format and use them in the emulator. The

registered package of this emulator contains a program DISCIPLE, that can

read DISCiPLE and Plus D disks and convert the snapshots and other �les

on it to .TAP and .Z80 �les. The previous version of this program could

only read 3.5" Disciple disks, and had several bugs in the �le and snapshot

translation routines. So if you transferred programs with the old DISCIPLE

program and they don't work, don't blame the emulator but try to transfer

them again with the new program.

The current version of the DISCIPLE program reads 3.5" as well as 5.25"

DISCiPLE disks, will translate 48K, 128K and screen snapshots, and other

normal �les. The previous version used the .SAV �le format for normal

�les, which could be loaded into the emulator using LOAD *"b"; this version

2.9 Converting �le formats { the utility CONVERT 27

converts them into .TAP �les which can be loaded simply by using the normal

tape LOAD statements (see 2.4).

The DISCiPLE interface modi�es the Spectrum system variables in such

a way that LPRINT sends its output to DISCiPLE's own printer interface.

When you transfer a snapshot that uses the printer, you'll have to tell it to

use the Interface I's RS232 printer output instead, by breaking the program

and typing OPEN #3,"b". If you don't, you'll get strange results.

If you have got a Beta disk interface, your problem is solved too. J.L.

Bezemer wrote a program called BDDE that reads Beta disks. The program

can be downloaded from the Spectrum emulator support BBS.

Finally, maybe you were using another Spectrum emulator for the PC

before using this one, and you may have already got a collection of snapshot

or other �les. CONVZ80, another utility for registered users, can convert

between several snapshot formats, namely the .SNA format of JPP, the .SP

formats of VGASPEC and SPECTRUM, the .PRG �les of SpecEm, and the

.Z80 format of course. (It is by the way not necessary to convert .SNA �les,

the emulator can read them as they are.) CONVZ80 can also convert the

tape �les used by SpecEm and ZX to .TAP �les. CONVZ80 recognizes what

it should do by the extension of the �les you enter on the command line; to

distinguish between VGASPEC's and SPECTRUM's .SP formats you can

use the switch -o. If the extension consists of digits only, it is taken to be

a ZX tape �le, and if it contains non-digits and is none of .SP, .Z80, .SNA,

.PRG or .TAP it is regarded as a SpecEm tape �le.

SpecEm can load .PRG snapshot �les, but cannot save them. However,

it emulates the Multiface I, which can save snapshots to tape. SpecEm will

save these blocks as tape �les to disk. If you convert these to a .TAP �le (in

the correct order!), you can load them into Z80 and save the program as a

.Z80 �le.

2.9 Converting �le formats { the utility CONVERT

This section is about the utility CONVERT, which can convert some of

the Spectrum's own format into each other, and also converts some of the

emulator's formats into others. It is not about converting �les from other

emulators; read section 2.8 if you want to know about that.

CONVERT was useful when the emulator could only communicate with

snapshot �les and the RS232 link. It has become less useful now, with .TAP

�les, but it still has some useful features.

It can read three types of input �les: pure ASCII, pure bytes (for instance

a .SCR screen dump), and �les produced by a SAVE *"b" command.

Output is pure bytes, ASCII with either CR (Spectrum standard) or

28 2 THE EMULATOR

CR/LF (PC standard) for line breaks, SAVE *"b" �les containing a Basic or

code �le, a .PCX or a .GIF �le.

So what can you do? Main uses are adding LF (10 hex) bytes to a text

�le produced by the Spectrum; converting a code block into a SAVE *"b"

to load it into the Spectrum using LOAD *"b" (and the reverse of course:

converting a SAVE *"b" �le to pure bytes), and converting a screen dump to

.PCX or .GIF graphics �les.

Less useful, but possible: LISTing a program (SAVE *"b" �le) to produce

readable ASCII, and the reverse: converting an ASCII listing to executable

Basic again.

If you want to make a .PCX or a .GIF �le, input should be a SAVE *"b"

�le of a screen (length 6921 bytes exactly) or a bare .SCR screendump (length

6912 bytes). You can make screendumps by selecting the X-Extra functions

menu from the main menu.

2.10 The utilities Z802TAP and TAP2TAPE

The SamRam has built in it some snapshot software. Using this software

you can save any 48K Spectrum program to tape or to a .TAP �le, as is

explained in section 3.2 below. But the SamRam software cannot handle a

128K program.

The utility that can convert a 128K snapshot (and 48K ones for that

matter) to a .TAP �le is called Z802TAP. The .TAP �le includes a basic

loader, and a loading screen if you want. Z802TAP compresses the blocks it

writes (using a better method than used in compressing .Z80 �les) to save

loading time. If you don't want it to compress the blocks, for instance when

you want to take a look at the ram pages of the Spectrum 128, specify -u

when you run Z802TAP. You can load the converted program simply by

executing

Z80 -ti tapefile

and typing LOAD "" (for a 48K program) or changing the hardware mode to

Spectrum 128 and choose `Tape Loader' in the menu.

The program TAP2TAPE writes .TAP �les back to tape. The program

consists of a batch �le TAP2TAPE.BAT, which executes the TAP2TAPE.Z80

�le using the emulator. The .TAP �le is written to tape exactly as it is, so

that if a block contains a tape error, it won't load correctly from tape either.

If the entire .TAP �le has been saved the emulator will start loading from

tape. At that point, press space once to return to DOS.

29

3 THE SAMRAM

3.1 Basic extensions

The SamRam is a hardware device Johan and I built for our Spectrums. It

consists of a 32K static RAM chip which contains a modi�ed copy of the

normal Basic ROM and a number of other useful routines, like a monitor

and snapshot software. You can compare it to a Multiface I interface, but

it's more versatile. Another useful feature was a simple hardware switch

which allowed use of the shadow 32K Ram, present at 8000-FFFF in most

Spectrums, but hardly ever actually used.

For more details on the low-level hardware features of the SamRam read

chapter 5. In this chapter I'll explain the software features of the SamRam

software, somewhat bombastically called the `SamRam 32 Software System'

or the `Sam Operating System'. By the way, all similarity between existing

computers is in fact purely coincidental and has in no way been intended.

Really!

The SamRam o�ers a few new Basic commands, and a lot of useful rou-

tines that are activated by an NMI, i.e. by pressing F5. First I'll discuss the

Basic extension.

Select the SamRam by starting the emulator with the -s switch, or by

selecting it from the F9 menu. Normal Basic functions as usual; the character

set is di�erent from the original one. There are four new commands:

*RS, *MOVE, *SAVE and *SPECTRUM,

and two new functions, DEC and HEX, which have replaced ASN and ACS. DEC

takes a string argument containing a hexadecimal number, and returns the

decimal value of it. HEX is the inverse of the DEC function, and yields a

four-character string.

� *RS sends its arguments directly to the RS232 channel. You don't have

to open a "b" or "t" channel �rst. You're right, it's of limited use.

Example: *RS 13,10

� *MOVE is useful: it moves a block of memory to another place. Example:

*MOVE 50000,16384,6912 moves a screen-sized block from 50000 to

the start of the screen memory.

� *SAVE works like *MOVE, except that it activates the shadow SamRam

ROM before moving. I used this command to update the shadow ROM,

but on the emulator you can use it to move the shadow ROM to a

convenient place in Ram where you can take a look at it, for instance

by executing *SAVE 0,32768,16384.

30 3 THE SAMRAM

� *SPECTRUM resets the SamRam Spectrum to a normal one. You lose all

data in memory. By resetting the emulator by pressing ALT-F5, the

SamRam is activated again. Not very useful either.

� Then there's the Ramdisk, which is, like the Spectrum 128 ramdisk,

accessed via the SAVE!, LOAD!, CAT!, ERASE! and FORMAT!. The syntax

is straightforward. FORMAT! and CAT! need no parameters; ERASE! only

needs a name. If a �le is not found, the SamRam will respond with a

5-End of File error. The Ramdisk has a capacity of 25K.

3.2 The NMI software

Select the SamRam (F9-3), and press F5. A menu with eight icons pops up.

You can select each icon by moving the arrow to it (using the cursor keys

or the Kempston joystick), and pressing `0' or �re. The icons can also be

selected by pressing the appropriate letter key.

The eight icons are two arrows with N and E within them, a magnifying

glass with the letters `mc' in it (activated by pressing D), two screens (iden-

ti�ed by 1 and 2), a printer (P), a cassette (S) and a box saying `overig'. The

`D' activates the monitor or disassembler; read section 3.3 for information on

this program.

Pressing N or E returns you to the Spectrum. If you pressed N, the

normal Spectrum rom will be selected when the NMI software returns; if you

press E, the Rom with the Basic extensions will be selected. Some games

may crash if they see a di�erent rom than the standard Spectrum one.

Pressing 1 selects the tiny screen editor. You can move a `+' shaped

cursor about the screen using the cursor keys. The following commands are

available:

H: Get the current ATTR color from the screen at the cursor's current

position, and store it in memory. This color will be used by the next

command:

Z: Put the color on the screen

G: Get a character from the screen

P: Put the character on the screen

R: Remove all screen data that is invisible by the ATTR color

L: Take a look at the bitmap below the ATTR color codes

T: Return to the main menu. You can also return by pressing EDIT, or

ESC in the emulator.

3.2 The NMI software 31

B: Change border color

V: Clear the whole screen

If you press 0, you can edit the current 8x8 character block at pixel level.

Again you control the cursor with the cursor keys. Now 0 toggles a pixel. In

this mode there are two commands: C clears the whole block, and I inverts

it. Pressing EDIT (ESC) returns you to the big screen again.

The SamRam has two screen bu�ers. Bu�er 1 is used to hold the screen

which was visible when you pressed NMI, to be able to restore it when re-

turning. This is the screen you edit with `1'. The second screen bu�er can be

used to hold a screen for some time; it is not touched by the NMI software

directly, and will not even be destroyed by a Reset. If you press `2', a menu

appears with four Dutch entries:

1: Scherm 1 opslaan (Store screen 1 into bu�er 2)

2: Scherm 2 veranderen (Edit screen 2)

3: Schermen verwisselen (Swap screens)

4: Scherm 2 weghalen (Remove screen 2)

These four functions are rather obvious, I believe.

Pressing `P' pops up the printer menu. The screendump program is

written speci�cally for my printer, a Star SG-10. It will probably work on

some other printers, but not on most. The output is sent to the RS232

channel, so you have to redirect it to an LPT output.

Skipping the most interesting, `S', for a moment, let's �rst discuss the

�nal menu, `O' for `Overig', Dutch for miscellaneous. There are �ve menu

options, of which three are not useful. The �rst gives a directory of the

cartridge currently in Microdrive 1. The last, `E', returns you to Basic if this

is anywhere possible: it resets some crucial system variables and generates

a Break into Program. You can use this for instance to break in a BEEP, or

crack a not-so-very-well-protected program. The three other options select

normal or speed-save, and store the current setting in CMOS Ram. Speed-

save won't work properly on the emulator, because the speed-save routine

toggles the upper 32K ram bank regularly, and this takes too much time

on the emulator. The setting is not important if you use the internal save

routine (which will be used by default, unless you select Real Mode).

Finally, the `S' option. This option allows you to save a snapshot to tape

or microdrive. I used it a lot on my real Spectrum, and it works just as

well on the emulator. It is very useful is you want to load a .Z80 program

back into a real Spectrum again. There are three `switches' you can toggle.

32 3 THE SAMRAM

The active choice is indicated by a bright green box, inactive boxes are non-

bright. You have to use EGA or VGA to be able to see it. . .The �rst switch

lets you select whether the SamRam rom should be active if the program

loads or not. This is only meaningful is you load it back in a SamRam again.

Usually I want the SamRam rom to be active because I like the character

set better. The second switch indicates whether the SamRam should save

a `loading screen', which it takes from screen bu�er 2. If screen bu�er 2

contains a screen, this switch will by default be on. Finally, the last switch

lets you select the output media, tape or cartridge.

If the program is loaded back into the SamRam, the only bytes that have

been corrupted are four bytes down on the stack; this will virtually never be

any problem. If the program is loaded back to a normal Spectrum, these four

bytes will also be corrupted, and the bottom two pixel lines of the screen will

be �lled with data. (This is considerably less than any other snapshotter I've

seen: for instance the Multiface I uses more than 35% of the screen!)

The Microdrive BASIC loader needs code in the SamRam rom to start

the program (the RANDOMIZE USR 43 calls it). It won't be very di�cult to

write a standard BASIC loader that doesn't need this code, but I don't think

many people desperately need it. . .

3.3 The built-in monitor

This is a really very convenient part of the emulator, and I use it a lot. It

is very MONS-like in its commands and visual appearance. It cannot single-

step however, but on the positive side it has some features MONS hasn't.

It is a part of the SamRam, and cannot therefore be used with Spectrum

128 programs. If you want to take a look at a Spectrum 128 program, press

F10, then change the hardware to SamRam without resetting, and �nally

generate an NMI in the Extra Functions menu. You won't probably be able

to continue to run the program, but at least you're able to see what it was

doing.

Press F5 for NMI, and D to enter the monitor/disassembler. The �rst

eight lines are the �rst eight instructions, starting at the Memory Pointer,

from here on abbreviated by MP. At �rst, MP is zero. The disassembler

knows all o�cial instructions, and the SLL instruction. If another ino�cial

instruction (i.e. starting with DD, FD or ED) is encountered, the �rst byte

is displayed on a blank line. The four lines below these display the value of

PC and SP, the �rst nine words on the stack (including AF and the program

counter, which have been pushed during NMI), and three MP-memories.

These can be used for temporary storage of the MP, for instance when you

take a look at the body of a CALL, and want to return to the main procedure

3.3 The built-in monitor 33

later.

The bottom part of the screen displays 24 bytes around the memory

pointer.

Commands are one letter long; no ENTER needs to be given. If one

or more operands are needed, a colon will appear. By default the monitor

accepts hexadecimal input. A leading $ denotes that the number is to be

regarded as decimal. If you give the # command, the default will toggle to

decimal, and you need to explicitly put a # in front of a number which is to

be interpreted as a hex number. Also, after the # command all addresses on

screen will be decimal. A single character preceded by the " symbol evaluates

to its ASCII code, and the single character M will evaluate to the current

value of the memory pointer. The monitor commands:

Q: Decrease the memory pointer by one. You e�ectively shift one byte up.

A: Increase the memory pointer, shifting one byte down.

ENTER: Shift one instruction down: the memory pointer is increased by the

length of �rst instruction displayed on screen.

M: Change the value of the memory pointer. For instance, M:M won't

change it.

P: Put. The word operand supplied will be stored in the �rst MP memory,

and the others will shift on place to the right. Usually, you'll want to

store the memory pointer by P:M

G: Get. Typing G:1, G:2 or G:3 moves the value of one of theMPmemories

to the MP.

B: Byte. This command needs a byte operand; it will be poked into mem-

ory, and the memory pointer will move one up.

I: Insert. The same as B, except that you can poke more than one byte.

It continues to ask for bytes to poke until you type Enter on a blank

line.

#: Toggles the default number base between hexadecimal and decimal.

F: Find. You can enter up to ten bytes, which will be searched through

memory. Searching will stop at address 0, because since the search

string is stored in shadow Ram, searching would otherwise not al-

ways terminate. Typing Enter on a blank line starts the search. Byte

operands are entered as usual, but:

34 3 THE SAMRAM

{ If a number bigger than 256 decimal is entered, it is treated as a

word in the standard LSB/MSB format. So, 1234 will search for

34,12 hex in that order. Note that 0012 will search for 12, not

12,00.

{ A line starting with " decodes into the string of characters (up to

ten) behind it. Normally this would only be the �rst character.

So instead of typing "M "Y "N "A "M "E (space=enter here)

you type "MYNAME. Note that any terminating " will also be

searched for!

{ An x is treated as a wildcard. So if you search for CD x 80 any call

to a subroutine in the block 8000-80FF is a hit. If you search for

x 8000, you'll see every one-byte instruction that has the address

8000 as operand.

N: Continues the search started by F from the current MP.

$: Displays one page of disassembly on screen. In this mode, the following

commands are possible:

$: Back to the main screen

7: [Shift 7 also works, cursor up]: Go to the previous page. The

monitor stores the addresses of the previous eight pages only.

Q: Go back one byte (decrease MP by one)

A: Go one byte forward (increase MP by one)

Z: Dump this screen to the printer, in ASCII format. Redirect the

RS232 output to a �le, and run CONVERT on it to convert the

CR's into CR/LF's before printing (or tell your printer to do the

conversion).

Every other key displays the next page of disassembly.

K: List. The same mode as with $ is entered, but instead of a disassembly

the bytes with their ASCII characters are displayed. Useful to look for

text.

C: Clear. Fills blocks of memory with a speci�ed value. The monitor

prompts with `First', `Last' and `With'. The `Last' address is inclusive!

D: Dump. Prompts with `First' and `Last', and dumps a disassembly of

the block between these addresses to the printer. See remark at $-Z.

The `Last' address is again inclusive.

3.3 The built-in monitor 35

R: Registers. If you press Enter after R, an overview of the registers

contents is displayed. If you type one of A, B, C, D, E, H, L, A', B',

C', D', E', H', L', I, R, AF, BC, DE, HL, AF', BC', DE', HL', IX, IY,

SP or PC, you can change the value of it. Changing the value of SP

also changes the PC and AF values by the way. You cannot change the

Interrupt mode or IFF.

V: Verplaats (Move). Prompts with `From', `To' and `Length'. Obvious.

S: Save. Enter the start of the block you wish to save �rst. The monitor

then prompts with `Length'. The block is saved without a header, as

a normal data block (A, the agbyte, is 0FF)

L: Load. Loads a block of data from tape, at the speci�ed address. Normal

data blocks, headers and blocks with non- standard ag bytes can be

loaded. The �rst byte in memory will contain the ag byte. If the

checksum isn't 0 after loading, indicating a tape error, you'll hear a

beep.

H: Header read. Loads headers and displays the contents on screen.

As you're reading this part, I assume you know something of machine code.

Probably you would be interested in peeking into the software of the Sam-

Ram, the Interface I or the Spectrum 128. You'll �rst have to move these

roms in ram to be able to look at them with the monitor.

The Interface I rom can be moved into ram by saving it to microdrive or

to the "b" channel, with:

SAVE *"m";1;"rom" CODE 0,8192 or SAVE *"b" CODE 0,8192, and loading

it back again at 32768 for instance. You can also put this small machine code

routine at 23296 and run it: F3 21 0C 5B E5 21 00 00 E5 C3 08 00 21 00 00

11 00 80 01 00 20 ED B0 FB C3 00 07.

The two SamRam roms are easy. The �rst you don't need to transfer;

the monitor looks at the extended basic rom by default. The second rom can

be moved to 32768 by typing *SAVE 0,32768,16384. (The SAVE is not the

keyword SAVE!)

The �rst '128 rom, the one which is active at reset and contains most

of the new code, is moved up by typing SAVE!"rom"CODE 0,16384, then

LOAD!"rom"CODE 32768. The other rom is most conveniently moved by sav-

ing it to a .TAP �le and loading it back again in ram. To select the SamRam

type SPECTRUM �rst, and then switch the hardware without resetting.

36 4 THE SPECTRUM

4 THE SPECTRUM

4.1 The Spectrum

This emulator supports the Interface I and the Spectrum 128. Many Spec-

trum users will have no experience with them, so some comments may be

useful. On the other hand, I don't think this is the right place to describe

the Spectrum Basic in full detail. If you want to know it all, read the o�cial

manuals!

If you want to use Spectrum Basic, you will need the keywords. You

could by the way now also use the Spectrum 128 Basic where you can type

the keywords in by full.

If you press ALT-F1 in the emulator, the Spectrum keyboard layout will

appear. For completeness I include an alphabetical list of all keywords and

their key-combination. In the list below, K stands for Keyword mode, E for

E-mode (type Shift-Alt of Shift-Ctrl to select E-mode), S for Symbol Shift,

and SE for Symbol Shifted (Alt/Ctrl) E-mode: select E mode and type the

letter while depressing Symbol Shift.

Character Spectrum-Keyb. PC-Keyboard

& S 6 ALT (or CTRL) 6

' S 7 ALT 7 or '/"

(S 8 ALT 8

) S 9 ALT 9

S 0 ALT 0 or SHIFT /-

< S r ALT r or SHIFT </,

> S t ALT t or SHIFT >/,

; S o ALT o or :/;

" S p ALT p or SHIFT "/'

^ S h ALT h

- S j ALT j or /-

+ S k ALT k or SHIFT +/= oder GREY +

= S l ALT l or +/=

: S z ALT z or SHIFT :/;

? S c ALT c or SHIFT ?//

/ S v ALT v or ?//

� S b ALT b or GREY PRTSC/*

, S n ALT n or </,

. S m ALT m or >/.

4.2 The Interface I 37

Keyword Code Keyword Code Keyword Code

ABS E g GO TO K g PRINT K p

ACS SE w IF K u RANDOMIZE K t

AND S y IN SE i READ E a

ASN SE q INK SE x REM K e

AT S i INKEY$ E n RESTORE E s

ATN SE e INPUT K i RETURN K y

ATTR SE l INT E r RND E t

BEEP SE z INVERSE SE m RUN K r

BIN E b LEN E k RAVE K s

BORDER K b LET K l SCREEN$ SE k

BRIGHT SE b LIST K k SGN E f

CAT SE 9 LINE SE 3 SIN E q

CHR$ E u LLIST E v SQR E h

CIRCLE SE h LN E z STEP S d

CLEAR K x LOAD K j STOP S a

CLOSE # SE 5 LPRINT E c STR$ E y

CLS K v MERGE SE t TAB E p

CODE E i MOVE SE 6 TAN E e

CONTINUE K c NEW K a THEN S g

COPY K z NEXT K n TO S f

COS E w NOT S s USR E l

DATA E d OPEN # SE 4 VAL E j

DEF FN SE 1 OR S u VAL$ SE j

DIM K d OUT SE o VERIFY SE r

DRAW K w OVER SE n <= S q

ERASE SE 7 PAPER SE c >= S e

EXP E x PAUSE K m <> S w

FLASH SE v PEEK E o

FN SE 2 PI E m

FOR K f PLOT K q

FORMAT SE 0 POINT SE 8 DEC SE q

GO SUB K h POKE K o HEX SE w

4.2 The Interface I

If you want to use the microdrive, you'll need cartridge �les. The emulator

can create an empty cartridge �le for you. You have to format it before you

can use it. Type

FORMAT "m";1;"name"

38 4 THE SPECTRUM

to format the cartridge currently in Microdrive 1 giving it the name `name'.

Next, type CAT 1 to get a catalogue of the �les on it (none of course) and

the number of kilobytes free. You can save a �le by typing for instance

SAVE *"m";1;"screen"SCREEN$

Instead of SCREEN$ you can use all other expressions that are permitted also

when saving to tape, like LINE nnnn or CODE x,y etcetera. To load a �le

back from cartridge, you type (you guessed it)

LOAD *"m";1;"screen"SCREEN$

If the �le doesn't exist or is of the wrong type you'll get the appropriate error

message. To erase a �le, type for instance

ERASE "m";1;"screen"

Note that no * is needed (or even permitted), and that only the name should

be given. There's another way to create a �le on a cartridge, and that is by

using a command like OPEN #3;"m";1;"name", and printing to that stream.

You can use MOVE to move data from stream to stream, but I'll not go into

that | it's not very much used anyway.

Instead of to the microdrive, you can also `save to the RS232 link'. For

instance, type SAVE *"b"SCREEN$ (note: there's no name!) to save a screen.

On the emulator you can send the output to the RS232 channel to a printer

(then SAVE *"b" is useless), to a �le (can be useful) or to the COM port

(very useful if you connect a real Spectrum to the PC's COM port!). You

can load the data back by typing LOAD *"b"SCREEN$ and making sure the

RS232 channel is fed with the right input (from a COM port or a �le). See

also paragraph 2.6.

If you want to use the RS232 channel for printing, open stream 3 for

output to that channel by typing

OPEN #3,"b"

or

OPEN #3,"t"

The �rst will simply copy everything you send to stream 3 (using for in-

stance LPRINT or LLIST) to the RS232 channel; the second converts CR's

into CR/LF's, breaks o� lines at 80 characters and translates keywords into

character sequences. "t" is useful for LLISTings, but not for anything else.

Useful extra commands: CLS #, to clear the screen and reset the at-

tributes to their reset defaults, and CLEAR # to do a CLS # and close all

currently open streams (discarding all data that may still be bu�ered!)

4.3 The Spectrum 128 39

The Interface I uses its own system variables. At the �rst error message

you make (or RASP, or ashing question mark) and at the �rst Interface I

statement you execute, it inserts them automatically. Some programs will

not run when the Interface I has inserted its system variables. So if you load

a game from tape, reset the Spectrum �rst and don't make an error typing

LOAD "". With a bit of exercise you should be able to do this.

4.3 The Spectrum 128

The main new features of the Spectrum 128 are its larger memory, that can

be used as a Ram drive in Basic, and music capabilities.

The Ram drive is accessed via the LOAD!, SAVE!, ERASE! and CAT! com-

mands. They work as you would expect. Examples:

SAVE!"name"SCREEN$

CAT!

LOAD!"name"SCREEN$

ERASE!"name"

The 3 channel sound chip of the Spectrum 128 can be used in Basic with the

PLAY command. Example:

PLAY "cde","efg","gAB"

plays three chords. You can program complex e�ects, melodies and rhythms

with the play command; they require many commands in the three voice

strings which I won't explain. . .They are explained in the Spectrum 128's

user guide.

40 5 TECHNICAL INFORMATION

5 TECHNICAL INFORMATION

5.1 The Spectrum

The Spectrum is at the hardware level a very simple machine. There's the

16K ROM which occupies the lowest part of the address space, and 48K of

RAM which �lls up the rest. An ULA which reads the lowest 6912 bytes

of RAM to display the screen, and contains the logic for just one I/O port

completes the machine, from a software point of view at least.

Every even I/O address will address the ULA, but to avoid problems with

other I/O devices only port FE should be used. If this port is written to,

bits have the following meaning:

Bit 7 6 5 4 3 2 1 0

E M Border

The lowest three bits specify the border colour; a zero in bit 3 activates the

MIC output, and a one in bit 4 activates the EAR output (which sounds the

internal speaker). The real Spectrum also activates the MIC when the ear

is written to; the emulator doesn't. This is no problem; MIC is only used

for saving, and when saving the Spectrum never sounds the internal speaker.

The upper three bits are unused.

If port FE is read from, the highest eight address lines are important too.

A zero on one of these lines selects a particular half-row of �ve keys:

IN Reads keys (bit 0 to bit 4 inclusive)

#FEFE: SHIFT, Z, X, C, V

#FDFE: A, S, D, F, G

#FBFE: Q, W, E, R, T

#F7FE: 1, 2, 3, 4, 5

#EFFE: 0, 9, 8, 7, 6

#DFFE: P, O, I, U, Y

#BFFE: ENTER, L, K, J, H

#7FFE: SPACE, SYM SHIFT, M, N

A zero in one of the �ve lowest bits means that the corresponding key is being

pressed. If more than one address line is made low, the result is the logical

AND of all single inputs, so a zero in a bit means that at least one of the

appropriate keys is pressed. For example, only if each of the �ve lowest bits of

5.1 The Spectrum 41

the result from reading from port 00FE (for instance by XOR A/IN A,(FE))

is one, no key is pressed.

A �nal remark about the keyboard. It is connected in a matrix-like

fashion, with 8 rows of 5 columns, as is obvious from the above remarks.

Any two keys pressed simultaneously can be uniquely decoded by reading

from the IN ports, however, if more than two keys are pressed decoding may

not be uniquely possible. For instance, if you press Caps shift, B and V,

the Spectrum will think also the Space key is pressed, and react by giving

the `Break into Program' report. This matrix behaviour is also emulated -

without it, Zynaps for instance won't pause when you press 5,6,7,8 and 0

simultaneously.

Bit 5 (value 64) of IN-port FE is the ear input bit. When the line is silent,

its value is zero, except in the early Model 2 of the Spectrum, where it was

one. When there is a signal, this bit toggles. The Spectrum loading software

is not sensitive to the polarity of this bit (which it de�nitely should not be,

not only because of this model di�erence, but also because you cannot be

sure the tape recorder doesn't change the polarity of the signal recorded!)

Some old programs rely on the fact that bit 5 is always one (for instance

Spinads); for these programs the emulator can mimic a Model 2 Spectrum.

Bits 6 and 7 are always one.

The ULA with the lower 16K of RAM, and the processor with the upper

32K RAM and 16K ROM are working independently of each other. The

data and address buses of the Z80 and the ULA are connected by small

resistors; normally, these do e�ectively decouple the buses. However, if the

Z80 wants to read of write the lower 16K, the ULA halts the processor if it is

busy reading, and after it's �nished it lets the processor access lower memory

through the resistors. A very fast, cheap and neat design indeed!

If you run a program in the lower 16K of RAM, or read or write in that

memory, the processor is halted sometimes. This part of memory is therefore

somewhat slower than the upper 32K block. This is also the reason that you

cannot write a sound- or save-routine in lower memory; the timing won't be

exact, and the music will sound harsh. Also, INning from port FE will halt

the processor, because the ULA has to supply the result. Therefore, INning

from port FE is a tiny bit slower on average than INning from other ports;

whilst normally an IN A,(nn) instruction would take 11 T states, it takes

12.15 T states on average if nn=FE. See below for more exact information.

If the processor reads from a non-existing IN port, for instance FF, the

ULA won't stop, but nothing will put anything on the data bus. Therefore,

you'll read a mixture of FF's (idle bus), and screen and ATTR data bytes

(the latter being very scarce, by the way). This will only happen when the

ULA is reading the screen memory, about 60% of the 1/50th second time

42 5 TECHNICAL INFORMATION

slice in which a frame is generated. The other 40% the ULA is building the

border or generating a vertical retrace. This behaviour is actually used in

some program, for instance by Arkanoid, and the emulator also emulates this

behaviour.

Finally, there is an interesting bug in the ULA which also has to do with

this split bus. After each instruction fetch cycle of the processor, the proces-

sor puts the I-R register `pair' (not the 8 bit internal Instruction Register,

but the Interrupt and R registers) on the address bus. The lowest 7 bits, the

R register, are used for memory refresh. However, the ULA gets confused

if I is in the range 64-127, because it thinks the processor wants to read

from lower 16K ram very, very often. The ULA can't cope with this read-

frequency, and regularly misses a screen byte. Instead of the actual byte, the

byte previously read is used to build up the video signal. The screen seems

to be �lled with `snow'; however, the Spectrum won't crash, and program

will continue to run normally. There's one program I know of that uses this

to generate a nice e�ect: Vectron. (which has very nice music too by the

way). This e�ect has not been implemented however - it's a bit useless (but

maybe I'll include it in the future).

The processor has three interrupt modes, selected by the instructions IM

0, IM 1 and IM 2. In mode 1, the processor simply executes a RST #38

instruction if an interrupt is requested. This is the mode the Spectrum is

normally in. The other mode that is commonly used is IM 2. If an interrupt

is requested, the processor �rst builds a 16 bit address by combining the I

register (as the high byte) with whatever the interrupting device places on the

data bus. The word at this address is then called. Rodnay Zaks in his book

`Programming the Z80' states that only even bytes are allowed as low index

byte, but that isn't true. The normal Spectrum contains no hardware to

place a byte on the bus, and the bus will therefore always read FF (because

the ULA also doesn't read the screen if it generates an interrupt), so the

resulting index address is 256*I+0FF. However, some not-so-neat hardware

devices put things on the data bus when they shouldn't, so later programs

didn't assume the low index byte was 0FF. These programs contain a 257

byte table of equal bytes starting at 256*I, and the interrupt routine is placed

at an address that is a multiple of 257. A useful but not so much used trick

is to make the table contain FF's (or use the ROM for this) and put a byte

18 hex, the opcode for JR, at FFFF. The �rst byte of the ROM is a DI, F3

hex, so the JR will jump to FFF4, where a long JP to the actual interrupt

routine is put.

In interrupt mode 0, the processor executes the instruction that the in-

terrupting device places on the data bus. On a standard Spectrum this will

be the byte FF, coincidentally (. . .) the opcode for RST #38. But for the

5.1 The Spectrum 43

same reasons as above, this is not really reliable.

The 50 Hz interrupt is synchronized with the video signal generation by

the ULA; both the interrupt and the video signal are generated by it. Many

programs use the interrupt to synchronize with the frame cycle. Some use it

to generate fantastic e�ects, such as full-screen characters, full-screen hori-

zon (Aquaplane) or pixel colour (Uridium for instance). Very many modern

programs use the fact that the screen is `written' (or `�red') to the CRT in

a �nite time to do as much time-consuming screen calculations as possible

without causing character ickering: although the ULA has started display-

ing the screen for this frame already, the electron beam will for a moment not

`pass' this-or-that part of the screen so it's safe to change something there.

So the exact time in the 1/50 second time-slice at which the screen is updated

is very important. Because the emulator updates the screen at once, no sin-

gle best solution can be given, and therefore the user can select one of three

possibilities (low, normal or high video synchronisation, corresponding to a

screen update after 1/200, 2/200 or 3/200 of a (relative) second after a Z80

interrupt) which gives the best results. Try for instance Zynaps; with nor-

mal video synchronisation the top four or �ve lines of the background move

out-of-phase with the rest, and your space-ship ickers in that region. With

low video synchronisation the background moves smoothly but the sprites

icker in all parts of the screen. Only with high video sync everything moves

smoothly and doesn't icker.

This emulator does not try to emulate the really time-critical border

pattern e�ects (except when loading, but the width of the loading stripes are

not quite right because also PC video timings come into play), but maybe I'll

include it in the future. I will need some hard data on video timings then,

and I've �gured these out recently. Here they are.

Each line takes exactly 224 T states. After an interrupt occurs, 64 line

times pass before the byte 16384 is displayed. At least the last 48 of these

are actual border-lines. I could not determine whether my monitor didn't

display the others or whether it was in vertical retrace, but luckily that's not

really important. Then the 192 screen+border lines are displayed, followed

by about 56 border lines again. 56.5 border lines would make up exactly

70000 T states, 1/50th of 3500000. However, I noticed that the frequency of

the 50 Hz interrupt (measured in 1/T states!) changes very slightly when my

Spectrum gets hot (I think it has something to do with the relative change

of the frequencies of the two crystals in the Spectrum), so the time between

interrupts will probably not be exactly 70000 T states. Anyway, whether

the �nal border block is of �xed or variable length doesn't concern us either,

the timings of the start and end of the screen, which are the timings of real

interest, are �xed.

44 5 TECHNICAL INFORMATION

Now for the timings of each line itself. I de�ne a screen line to start

with 256 screen pixels, then border, then horizontal retrace, and then border

again. All this takes 224 T states. Every half T state a pixel is written to

the CRT, so if the ULA is reading bytes it does so each 4 T states (and then

it reads two: a screen and an ATTR byte). The border is 48 pixels wide at

each side. A video screen line is therefore timed as follows: 128 T states of

screen, 24 T states of right border, 48 T states of horizontal retrace and 24

T states of left border.

When an interrupt occurs, the running instruction has to be completed

�rst. So the start of the interrupt is �xed relative to the start of the frame

up to the length of the last instruction in T states. If the processor was

executing a HALT (which, according to the Z80 books I read, is e�ectively

many NOPs), the interrupt routine starts at most 3 T states away from the

start of the frame. Of course the processor also needs some T states to store

the program counter on the stack, read the interrupt vector and jump to the

routine, but since I cannot determine that by only using the Spectrum, it is

useless information by that very reason alone!

Now when to OUT to the border to change it at the place you want? First

of all, you cannot change the border within a `byte', an 8-pixel chunk. If we

forget about the screen for a moment, if you OUT to port FE after 14326

to 14329 T states (including the OUT) from the start of the IM 2 interrupt

routine, the border will change at exactly the position of byte 16384 of the

screen. The other positions can be computed by remembering that 8 pixels

take 4 T states, and a line takes 224 T states. You would think that OUTing

after 14322 to 14325 T states, the border would change at 8 pixels left of the

upper left corner of the screen. This is right for 14322, 14323 and 14324 T

states, but if you wait 14325 T states the ULA happens to be reading byte

16384 (or 22528, or both) and will halt the processor for a while, thereby

making you miss the 8 pixels. This exception happens again after 224 T

states, and again after 448, an so forth. These 192 exceptions left of the

actual screen rectangle are the only ones; similar things don't happen at the

right edge because the ULA don't need to read things there - it has just

�nished!

As noted above, reading or writing in low ram (or OUTing to the ULA)

causes the ULA to halt the processor. When and how much? The processor

is halted each time you want to access the ULA or low memory and the ULA

is busy reading. Of the 312.5 `lines' the ULA generates, only 192 contain

actual screen pixels, and the ULA will only read bytes during 128 of the 224

T states of each screen line. But if it does, the processor is halted for exactly

4 T states.

5.2 The Interface I 45

5.2 The Interface I

The Interface I is quite complicated. It uses three di�erent I/O ports, and

contains logic to page and unpage an 8K ROM if new commands are used.

I won't be very detailed here; you could refer to the source code of the

emulator if you want to know some details, or read the `Spectrum Shadow

ROM Disassembly' by Gianlura Carri, published by Melbourne House - but

don't expect the same level of detail as of Ian Logan and Frank O'Hara in

their Rom disassembly book.

The ROM is paged if the processor executes the instruction at ROM

address 0008 or 1708 hexadecimal, the error and close# routines. It is inac-

tivated when the Z80 executes the RET at address 0700.

I/O Port E7 is used to send or receive data to and from the microdrive.

Accessing this port will halt the Z80 until the Interface I has collected 8 bits

from the microdrive head; therefore, it the microdrive motor isn't running,

or there is no formatted cartridge in the microdrive, the Spectrum hangs.

This is the famous `IN 0 crash'.

Port EF is used for several things:

Bit 7 6 5 4 3 2 1 0

READ busy dtr gap sync write

prot.

WRITE wait cts erase r/w comms comms

clk data

Bits DTR and CTS are used by the RS232 interface. The WAIT bit is used

by the Network to synchronise, GAP, SYNC, WR PROT, ERASE, R/ W,

COMMS CLK and COMMS DATA are used by the microdrive system. If the

microdrive is not being used, the COMMS DATA output selects the function

of bit 0 of out-port F7:

Bit 7 6 5 4 3 2 1 0

READ txdata net

input

WRITE net output

rxdata

TXDATA and RXDATA are the input and output of the RS232 port. COMMS

DATA determines whether bit 0 of F7 is output for the RS232 or the network.

46 5 TECHNICAL INFORMATION

5.3 The SamRam

The SamRam contains a 32K static CMOS Ram chip, and some I/O logic

for port 31. If this port is read, it returns the position of the joystick, as a

normal Kempston joystickinterface would. If written to, the port controls a

programmable latch chip (the 74LS259) which contains 8 latches:

Bit 7 6 5 4 3 2 1 0

WRITE address bit

The address selects on of the eight latches; bit 0 is the new state of the latch.

The 16 di�erent possibilities are collected in the diagram below:

OUT 31, OUTPUT RESULT

0 0 Switch on write protect of CMOS RAM

1 0 Write to CMOS RAM allowed

2 1 Turn on CMOS RAM (see also 6/7)

3 1 Turn o� CMOS RAM (standard Spec. ROM)

4 2 |

5 2 Ignore all OUT's to 31 hereafter

6 3 Select CMOS bank 0 (Basic ROM)

7 3 Select CMOS bank 1 (Monitor,. . .)

8 4 Select interface 1

9 4 Turn o� IF 1 (IF1 ROM won't be paged)

10 5 Select 32K RAM bank 0 (32768-65535)

11 5 Select 32K RAM bank 1 (32768-65535)

12 6 Turn o� beeper

13 6 Turn on beeper

14 7 |

15 7 |

At reset, all latches are 0. If an OUT 31,5 is issued, only a reset will give

you control over the latches again. The write protect latch is not emulated;

you're never able to write the emulated CMOS ram in the emulator. Latch 4

will pull up the M1 output of the Z80. The Interface I won't page the ROM

anymore then.

5.4 The Z80 microprocessor

The Z80 processor is quite straightforward, and contains to my knowledge

no interesting bugs or quirks. However, it has some undocumented features.

Some of these are quite useful, and some are not, but since many programs use

the useful ones, and a few programs use the weird ones, I tried to �gure them

5.4 The Z80 microprocessor 47

out and emulate them as best as I could. There is a Z80 emulator around,

intended as a CP/M emulator, which halts the program if an undocumented

opcode is encountered. I don't think this makes sense. ZiLOG doesn't dictate

the law, the programs which use the processor's features do!

Most Z80 opcodes are one byte long, not counting a possible byte or

word operand. The four opcodes CB, DD, ED and FD are shift opcodes:

they change the meaning of the opcode following them.

There are 248 di�erent CB opcodes. The block CB 30 to CB 37 is missing

from the o�cial list. These instructions, usually denoted by the mnemonic

SLL, Shift Left Logical, shift left the operand and make bit 0 always one.

Bounder and Enduro Racer use them. The SamRammonitor can disassemble

these and uses the mnemonic SLL. These instructions are quite commonly

used.

The DD and FD opcodes precede instructions using the IX and IY regis-

ters. If you look at the instructions carefully, you see how they work:

2A nn LD HL,(nn)

DD 2A nn LD IX,(nn)

7E LD A,(HL)

DD 7E d LD A,(IX+d)

A DD opcode simply changes the meaning of HL in the next instruction.

If a memory byte is addressed indirectly via HL, as in the second example,

a displacement byte is added. Otherwise the instruction simply acts on IX

instead of HL. (A notational awkwardness, that will only bother assembler

and disassembler writers: JP (HL) is not indirect; it should have been de-

noted by JP HL) If a DD opcode precedes an instruction that doesn't use

the HL register pair at all, the instruction is executed as usual. However, if

the instruction uses the H or L register, it will now use the high or low halves

of the IX register! Example:

44 LD B,H

FD 44 LD B,IYh

These types of ino�cial instructions are used by very many programs. By

the way, many DD or FD opcodes after each other will e�ectively be NOPs,

doing nothing except repeatedly setting the ag `treat HL as IX' (or IY) and

taking up 4 T states. (But try to let MONS disassemble such a block.)

I've never seen a program using ino�cial ED instructions, and except

for ED 6B nn, a long version of 2A nn, LD HL,(nn) I don't know any. I am

pretty sure however that they exist, but I never took the trouble to test them

all.

About the R register. This is not really an undocumented feature, al-

48 5 TECHNICAL INFORMATION

though I have never seen any thorough description of it anywhere. The R

register is a counter that is updated every instruction, where DD, FD, ED

and CB are to be regarded as separate instructions. So shifted instruction

will increase R by two. There's an interesting exception: doubly-shifted op-

codes, the DDCB and FDCB ones, increase R by two too. LDI increases

R by two, LDIR increases it by 2 times BC, as does LDDR etcetera. The

sequence LD R,A / LD A,R increases A by two, except for the highest bit:

this bit of the R register is never changed. This is because in the old days

everyone used 16 Kbit chips. Inside the chip the bits where grouped in a

128x128 matrix, needing a 7 bit refresh cycle. Therefore ZiLOG decided to

count only the lowest 7 bits. Anyway, if the R register emulation is switched

on the R register will behave as is does on a real Spectrum; if it is o� it will

(except for the upper bit) act as a random generator.

You can easily check that the R register is really crucial to memory re-

fresh. Assemble this program:

ORG 32768

DI

LD B,0

L1 XOR A

LD R,A

DEC HL

LD A,H

OR L

JR NZ,L1

DJNZ L1

EI

RET

It will take about three minutes to run. Look at the upper 32K of memory,

for instance the UDG graphics. It will have faded. Only the �rst few bytes

of each 256 byte block will still contain zeros, because they were refreshed

during the execution of the loop. The ULA took care of the refreshing of the

lower 16K. (This example won't work on the emulator of course!)

Then there's one other dark corner of the Z80 which has its e�ect on

programs like Sabre Wulf, Ghosts'n Goblins and Speedlock. The Mystery of

the Undocumented Flags!

Bit 3 and 5 of the F register are not used. They can contain information,

as you can readily �gure out by using PUSH AF and POP AF. Furthermore,

sometimes their values change. I found the following empirical rule:

5.4 The Z80 microprocessor 49

The values of bit 7, 5 and 3 follow the values of the corresponding bits

of the last 8 bit result of an instruction that changed the usual ags.

For instance, after an ADD A,B those bits will be identical to the bits of

the A register. (Bit 7 of F is the sign ag, and �ts the rule exactly). An

exception is the CP x instruction (x=register, (HL) or direct argument). In

that case the bits are copied from the argument.

If the instruction is one that operates on a 16 bit word, the 8 bits of the

rule are the highest 8 bits of the 16 bit result - that was to be expected since

the S ag is extracted from bit 15.

Ghosts'n Goblins use the undocumented ag due to a programming error.

The rhino in Sabre Wulf walks backward or keeps running in little circles in

a corner, if the (in this case undocumented) behaviour of the sign ag in the

BIT instruction isn't right. I quote:

AD86 DD CB 06 7E BIT 7,(IX+6)

AD89 F2 8F AD JP P,#AD8F

An amazing piece of code! Speedlock does so many weird things that all

must be exactly right for it to run. Finally, the '128 rom uses the AF register

to hold the return address of a subroutine for a while. To keep all programs

happy and still have a fast emulator, I had to make a compromise. The

undocumented ags are not always emulated right, but they are most of the

time.

Finally, a remark about the interrupt ip ops IFF1 and IFF2. There

seems to be a little confusion about these. These ip ops are simultane-

ously set or reset by the EI and DI instructions. IFF1 determines whether

interrupts are allowed, but its value cannot be read. The value of IFF2 is

copied to the P/V ag by LD A,I and LD A,R. When an NMI occurs, IFF1

is reset, thereby disallowing further (maskable) interrupts, but IFF2 is left

unchanged. This enables the NMI service routine to check whether the inter-

rupted program had enabled or disabled maskable interrupts. So, Spectrum

snapshot software can only read IFF2, but most emulators will emulate both,

and then the one that matters most is IFF1.

Now for the emulated Z80. I have added eight instructions, to speed

up the RS232 input and output of the Interface I and several things of the

SamRam. These opcodes, ED F8 to ED FE are of little use to any other

program. ED FF is a nice one: it returns you to DOS immediately. I used

it for debugging purposes.

50 5 TECHNICAL INFORMATION

5.5 File formats

This sections describes the formats of the �les used by the emulator.

ROMS.BIN:

00000-03�f Ordinary Spectrum rom

04000-05�f Interface I rom (8K)

06000-09�f First SamRam rom (contains BASIC)

0a000-0d�f Second SamRam rom (contains monitor,. . .)

0e000-11�f First Spectrum 128K rom (active at RESET)

12000-15�f Second Spectrum 128K rom (contains BASIC)

The ordinary rom has not been modi�ed. The Interface I rom has under-

gone some modi�cations, to speed up the RS232 input/output routines. If

you don't like this, or want to use another version of the Interface I, you

could put that code at the right place in the ROMS.BIN �le. The interface I

should work properly, although the RS232 will be slower (always FORMAT

the "b" or "t" channel at 19200 baud, by the way, if you replace the rom

code, there's no point in waiting for nothing!) The microdrive routines have

not been modi�ed in any way. Here are the changes of the Interface I rom:

Address Old New Address Old New

0B9E ED ED 0D20 FB 00

0B9F 5B FC 0D2A 37 ED

0BA0 C3 F5 0D2B F3 FD

0BA1 5C C3 0D2C CE 18

0BA2 21 34 0D2D 00 10

0BA3 20 0C 0D4C FB 00

These changes are not likely to cause problems; there are several versions

of the Interface I rom around, and program developers know this. It is also

a bit pointless to check whether the Interface I rom hasn't been modi�ed;

who would put his snapshot software in there anyway, and that's what those

people are afraid of.

The �rst and second SamRam rom have been modi�ed more extensively.

The biggest problem was that switching the upper 32K ram bank is very fast

in reality, but on the PC two blocks of 32K bytes had to be REP MOVSWded.

But since no programs know of the SamRam code anyway, this won't cause

any more problems it wouldn't already cause either. The two Spectrum 128

roms have not been modi�ed.

5.5 File formats 51

.TAP FILES:

The .TAP �les contain blocks of tape-saved data. All blocks start with

two bytes specifying how many bytes will follow (not counting the two length

bytes). Then raw tape data follows, including the ag and checksum bytes.

The checksum is the bitwise XOR of all bytes including the ag byte. For

example, when you execute the line SAVE "ROM" CODE 0,2 this will result:

13 00

| {z }

1

Spectrum-generated data

z }| {

00

|{z}

2

03

|{z}

3

52 4F 4D 7x20

| {z }

4

02 00 00 00 00 80

| {z }

5

F1

|{z}

6

04 00

| {z }

7

z }| {

FF

|{z}

8

F3 AF

| {z }

9

A3

|{z}

10

with the following meaning:

1: First block is 19 bytes (17 bytes+ag+checksum)

2: ag byte (A reg, 00 for headers, FF for datablocks)

3: �rst byte of header, indicating a code block

4: �lename

5: header info

6: checksum of header

7: length of second block

8: ag byte

9: �rst two bytes of rom

10: checksum (`checkbittoggle' would be better)

The emulator will always start reading bytes at the beginning of a block. If

less bytes are loaded than are available, the other bytes are skipped, and the

last byte loaded is used as checksum. If more bytes are asked for than exist

in the block, the loading routine will terminate with the usual tape-loading-

error ags set, leaving the error handling to the calling Z80 program.

Note that it is possible to join .TAP �les by simply stringing them to-

gether, for example:

COPY /B FILE1.TAP + FILE2.TAP ALL.TAP

For completeness, I'll include the structure of a tape header. A header always

consists of 17 bytes:

52 5 TECHNICAL INFORMATION

Byte Length Description

0 1 Type (0,1,2 or 3)

1 10 Filename (padded with blanks)

11 2 Length of data block

13 2 Parameter 1

15 2 Parameter 2

The type is 0,1,2 or 3 for a Program, Number array, Character array or Code

�le. A screen$ �le is regarded as a Code �le with start address 16384 and

length 6912 decimal. If the �le is a Program �le, parameter 1 holds the au-

tostart line number (or a number >=32768 if no LINE parameter was given)

and parameter 2 holds the start of the variable area relative to the start of

the program. If it's a Code �le, parameter 1 holds the start of the code block

when saved, and parameter 2 holds 32768. For data �les �nally, the byte at

position 14 decimal holds the variable name.

5.5 File formats 53

.MDR FILES:

The emulator uses a cartridge �le format identical to the `Microdrive

File' format of Carlo Delhez' Spectrum emulator Spectator for the QL. The

following information is adapted from Carlo's documentation. It can also

be found in the `Spectrum Microdrive Book', by Ian Logan (co-writer of the

excellent `Complete Spectrum ROM Disassembly').

A cartridge �le contains 254 `sectors' of 543 bytes each, and a �nal byte

ag which is non-zero is the cartridge is write protected, so the total length

is 137923 bytes. On the cartridge tape, after a GAP of some time the Inter-

face I writes 10 zeros and 2 FF bytes (the preamble), and then a �fteen byte

header-block-with-checksum. After another GAP, it writes a preamble again,

with a 15-byte record- descriptor-with-checksum (which has a structure very

much like the header block), immediately followed by the data block of 512

bytes, and a �nal checksum of those 512 bytes. The preamble is used by

the Interface I hardware to synchronise, and is not explicitly used by the

software. The preamble is not saved to the microdrive �le:

o�set length name contents

0 1 HDFLAG Value 1, to indicate header block

1 1 HDNUMB sector number (values 254 down to 1)

2 2 not used

4 10 HDNAME microdrive cartridge name (blank padded)

14 1 HDCHK header checksum (of �rst 14 bytes)

15 1 RECFLG - bit 0: always 0 to indicate record block

- bit 1: set for the EOF block

- bit 2: reset for a PRINT �le

- bits 3-7: not used (value 0)

16 1 RECNUM data block sequence number (value starts at 0)

17 2 RECLEN data block length (<=512, LSB �rst)

19 10 RECNAM �lename (blank padded)

29 1 DESCHK record descriptor checksum (of previous 14 bytes)

30 512 data block

542 1 DCHK data block checksum (of all 512 bytes of data

block, even when not all bytes are used)

repeated 254 times

(Actually, this information is `transparent' to the emulator. All it does is

store 2 times 254 blocks in the .MDR �le as it is OUTed, alternatingly of

length 15 and 528 bytes. The emulator does check checksums, see below; the

54 5 TECHNICAL INFORMATION

other �elds are dealt with by the emulated Interface I software.)

A used record block is either an EOF block (bit 1 of RECFLG is 1) or

contains 512 bytes of data (RECLEN=512, i.e. bit 1 of MSB is 1). An empty

record block has a zero in bit 1 of RECFLG and also RECLEN=0. An

unusable block (as determined by the FORMAT command) is an EOF block

with RECLEN=0.

The three checksums are calculated by adding all the bytes together mod-

ulo 255; this will never produce a checksum of 255. Possibly, this is the value

that is read by the Interface I if there's no or bad data on the tape.

In normal operation, all �rst-�fteen-byte blocks of each header or record

block will have the right checksum. If the checksum is not right, the block

will be treated as a GAP. For instance, if you type OUT 239,0 on a nor-

mal Spectrum with interface I, the microdrive motor starts running and the

cartridge will be erased completely in 7 seconds. CAT 1 will respond with

`microdrive not ready'. Try it on the emulator. . .

5.5 File formats 55

.SCR FILES:

.SCR �les are memory dumps of the �rst 6912 bytes of the Spectrummemory.

A coordinate (x,y), x between 0 and 255 and y between 0 and 192, (0,0) being

the upper left corner of the screen, corresponds to the pixel address

16384+INT (x/8)+1792*INT (y/64)-2016*INT (y/8)+256*y

The lowest three bits of x determine which bit of this address corresponds

to the pixel (x,y). This bit-map constitutes the larger part of the screen

memory, 256*192/8=6144 bytes. The �nal 768 bytes are attribute bytes.

The address of the attribute byte corresponding to pixel (x,y) is

22528+INT (x/8)+32*INT (y/8)

The lowest three bits of the attribute byte control the foreground color (the

color of the pixel if the corresponding bit is set), bits 3-5 control the back-

ground color, bit 6 is the bright bit and bit 7 is the ash bit: if it is set, every

16/50th of a second the ULA e�ectively ips the foreground and background

colours.

56 5 TECHNICAL INFORMATION

.Z80 FILES:

The old .Z80 snapshot format (for version 1.45 and below) looks like this:

Byte Length Description

0 1 A-register

1 1 F-register

2 2 BC-register pair (LSB, i.e. C, �rst)

4 2 HL-register pair

6 2 Program counter

8 2 Stack pointer

10 1 Interrupt register

11 1 Refresh register (Bit 7 is not signi�cant!)

12 1 Bit 0 : Bit 7 of the R-registers

Bit 1-3 : Border colour

Bit 4 : 1=Basic SamRom switched in

Bit 5 : 1=Block of data is compressed

Bit 6-7 : No meaning

13 2 DE-register pair

15 2 BC'-register pair

17 2 DE'-register pair

19 2 HL'-register pair

21 1 A'-register

22 1 F'-register

23 2 IY-register

25 2 IX-register

27 1 Interrupt ipop (0=DI, otherwise EI)

28 1 IFF2 (not particiulary important. . .)

29 1 Bit 0-1 : Interrupt mode (0, 1 oder 2)

Bit 2 : 1 = Issue-2-Emulation

Bit 3 : 1 = Double interrupt frequency

Bit 4-5 : 1 = High video synchronisation

: 3 = Low video synchronisation

: 0,2 = Normal

Bit 6-7 : 0 = Cursor/Protek/AGF Joyst ick

: 1 = Kempston joystick

: 2 = Sinclair 1 joystick

: 3 = Sinclair 2 joystick

Because of compatibility, if byte 12 is 255, it has to be regarded as being

1. After this header block of 30 bytes the 48K bytes of Spectrum memory

5.5 File formats 57

follows in a compressed format (if bit 5 of byte 12 is one). The compression

method is very simple: it replaces repetitions of at least �ve equal bytes by a

four-byte code ED ED xx yy, which stands for "byte yy repeated xx times".

Only sequences of length at least 5 are coded. The exception is sequences

consisting of ED's; if they are encountered, even two ED's are encoded into

ED ED 02 ED. Finally, every byte directly following a single ED is not taken

into a block, for example ED 6*00 is not encoded into ED ED ED 06 00 but

into ED 00 ED ED 05 00. The block is terminated by an end marker, 00 ED

ED 00.

That's the format of .Z80 �les as used by versions up to 1.45. Since version

2.01 emulates the Spectrum 128 too, there was a need for a new format.

The �rst 30 bytes are almost the same as the old versions' header. Of

the ag byte, bit 4 and 5 have got no meaning anymore, and the program

counter (bytes 6 and 7) are zero to signal a version 2.01 .Z80 �le. So loading

a new style .Z80 �le into an old emulator will cause an error or a reset at the

most.

After the �rst 30 bytes, an additional header follows:

Byte Length Description

30 2 Length of additional header block (contains 23)

32 2 Program counter

34 1 Hardware mode: 0=Spectrum 48K, 1=0+interface I,

2=SamRam, 3=Spectrum 128K, 4=3+interface I.

35 1 If in SamRam mode, bitwise state of 74ls259.

For example, bit 6=1 after an OUT 31,13 (=2*6+1)

If in 128 mode, contains last OUT to 7�d

36 1 Contains 0FF if Interface I rom paged

37 1 Bit 0: 1 if R register emulation on

Bit 1: 1 if LDIR emulation on

38 1 Last OUT to �fd (soundchip register number)

39 16 Contents of the sound chip registers

Hereafter a number of memory blocks follow, each containing the compressed

data of a 16K block. The compression is according to the old scheme, except

for the end-marker, which is now absent. The structure of a memory block is:

Byte Length Description

0 2 Length of data (without this 3-byte header)

2 1 Page number of block

3 [0] Compressed data

The pages are numbered, depending on the hardware mode, in the following

58 5 TECHNICAL INFORMATION

way:

Page In '48 mode In '128 mode In SamRam mode

0 48K rom rom (basic) 48K rom

1 Interf. I rom Interf. I rom Interf. I rom

2 - rom (reset) samram rom (basic)

3 - page 0 samram rom (monitor, . . .)

4 8000-b�f page 1 Normal 8000-b�f

5 c000-�� page 2 Normal c000-��

6 - page 3 Shadow 8000-b�f

7 - page 4 Shadow c000-��

8 4000-7�f page 5 4000-7�f

9 - page 6 -

10 - page 7 -

In 48K mode, pages 4,5 and 8 are saved. In SamRam mode, pages 4 to 8 are

saved. In 128 mode, all pages from 3 to 10 are saved. This version saves the

pages in numerical order. There is no end marker.

